PDA

View Full Version : extreme ends G25 calculator



Balboa
03-07-2025, 09:37 AM
just for fun, Model yourself with the individuals who score most of each main eurasian ancestral component


Sardinian:HGDP01066,0.119514,0.168578,0.026021,-0.050065,0.066166,-0.020638,-0.002115,0.007384,0.049086,0.085286,-0.008119,0.018883,-0.028097,-0.015001,-0.013708,-0.010872,0.009518,0.005068,0.00729,-0.02151,-0.004991,-0.004081,-0.010353,-0.0194,0.000958
Irish:513,0.132035,0.122879,0.059962,0.059755,0.02 8928,0.02259,0.00423,0.004615,0.0045,-0.002005,-0.000974,0.002248,-0.00996,-0.01734,0.028908,0.008618,-0.002608,0.006461,0.004022,0,0.007986,0.003091,0.0 10846,0.017593,0.00479
Basque_Gipuzkoa_Southwest:6639,0.130897,0.145221,0 .06675,0.016473,0.055087,0.005857,-0.00047,0.006,0.03211,0.049933,-0.011692,0.007943,-0.019623,-0.024222,0.019544,0.009149,-0.005346,0.00266,0.002263,0.002501,0.01672,0.00371 ,-0.018734,-0.017472,-0.003952
Latvian:latvian54A2,0.135449,0.119832,0.096166,0.0 96254,0.04924,0.038487,0.014101,0.016153,-0.002045,-0.040456,-0.005684,-0.018434,0.024975,0.029314,-0.010586,0.016706,0.024121,-0.001774,-0.002137,0.008879,-0.000749,-0.001731,0.01368,-0.004217,0.000359
Yemenite_Mahra:Y345,0.046667,0.133034,-0.068259,-0.118542,-0.000308,-0.068049,-0.013631,-0.009923,0.060539,-0.001822,0.021922,-0.035069,0.057383,0.008945,0.012486,0.022938,-0.026468,0.002914,-0.004651,0.029264,0.0141,0.015209,-0.007148,-0.00253,-0.000958
Berber_MAR_TIZ:BerT8,-0.062603,0.140143,-0.004903,-0.094316,0.036007,-0.044901,-0.040422,0.010846,0.094899,0.039727,0.005521,-0.007943,0.021407,-0.013487,0.027144,-0.016441,-0.002999,-0.031165,-0.068003,0.010755,-0.026204,-0.06566,0.030812,-0.020244,0.012693
Georgian_Megr:SMG5,0.103579,0.131003,-0.060716,-0.051034,-0.042469,-0.014781,0.012691,-0.003692,-0.066266,-0.021139,-0.000812,0.014537,-0.034043,0.004404,-0.004207,-0.017767,0.028815,-0.007981,-0.017598,0.022011,0.012104,0.000742,0.000616,-0.00253,-0.006347
Balochi_Iran:9AQ100,0.071709,0.055854,-0.105971,0.026486,-0.071398,0.026216,0.006815,0.001385,-0.030679,-0.030433,-0.003897,-0.004346,0.006392,-0.008945,0.017236,0.027313,-0.016298,0.007855,0.006536,-0.034141,0.00287,-0.016446,-0.00912,-0.023979,0.01916
Nanai:AMU-636,0.026179,-0.446833,0.081458,-0.048773,-0.056934,-0.043228,0.020916,0.028614,0.003068,0.013668,-0.038811,-0.003597,-0.003865,-0.00234,-0.006786,-0.008618,0.004303,0.007981,0.014455,0.014382,0.009 483,-0.030048,-0.018364,0.009519,0.000838
Saami:saami11,0.110408,-0.052808,0.113136,0.078166,-0.015387,0.008088,0.008695,0.014076,0.005727,-0.030433,0.031991,-0.003147,0.020069,-0.026974,-0.003122,0.001989,0.004042,-0.00038,-0.008547,-0.002501,0.017968,0.001978,0,0.004458,0.00467






Target: Irish:513
Distance: 3.6962% / 0.03696160
56.6 Pontic-Caspian_Steppe_Bronze_Age_Pastoralist
30.2 Aegean_Neolithic_Farmer
13.2 West_European_Hunter-Gatherer

Target: Sardinian:HGDP01066
Distance: 3.3675% / 0.03367458
83.6 Aegean_Neolithic_Farmer
12.8 West_European_Hunter-Gatherer
3.0 Pontic-Caspian_Steppe_Bronze_Age_Pastoralist
0.4 Indian_Hunter-Gatherer*
0.2 Lithic_Maghreb


Target: Basque_Gipuzkoa_Southwest:6639
Distance: 3.8718% / 0.03871795
53.2 Aegean_Neolithic_Farmer
24.6 Pontic-Caspian_Steppe_Bronze_Age_Pastoralist
22.2 West_European_Hunter-Gatherer


Target: Latvian:latvian54A2
Distance: 6.7129% / 0.06712942
46.8 Pontic-Caspian_Steppe_Bronze_Age_Pastoralist
33.0 Baltic_Hunter-Gatherer
20.2 Aegean_Neolithic_Farmer


Target: Yemenite_Mahra:Y345
Distance: 4.1744% / 0.04174398
62.8 Natufian
16.2 Zagrosian_Neolithic_Farmer
13.4 Levantine_Neolithic_Farmer
7.0 Armenian_Highlands_Bronze_Age
0.6 Papuan


Target: Berber_MAR_TIZ:BerT8
Distance: 2.4342% / 0.02434231
49.6 Lithic_Maghreb
38.2 Aegean_Neolithic_Farmer
6.8 Levantine_Neolithic_Farmer
4.0 Bantu_Iron_Age_Farmer
1.2 West_European_Hunter-Gatherer
0.2 Morocco_Late_Neolithic


Target: Georgian_Megr:SMG5
Distance: 1.7951% / 0.01795132
53.2 Caucasian_Hunter-Gatherer
25.6 Aegean_Neolithic_Farmer
14.2 Armenian_Highlands_Bronze_Age
6.8 Levantine_Neolithic_Farmer
0.2 Papuan


Target: Balochi_Iran:9AQ100
Distance: 1.9959% / 0.01995911
63.0 Zagrosian_Neolithic_Farmer
12.2 Aegean_Neolithic_Farmer
8.4 Pontic-Caspian_Steppe_Bronze_Age_Pastoralist
8.2 Indian_Hunter-Gatherer*
4.6 East_European_Hunter-Gatherer
1.8 West_European_Hunter-Gatherer
1.0 Natufian
0.6 Indochinese_Neolithic_Farmer
0.2 Levantine_Neolithic_Farmer


Target: Nanai:AMU-636
Distance: 3.4956% / 0.03495575
99.2 Ancient_Northeast_Asian
0.8 Caucasian_Hunter-Gatherer


Target: Saami:saami11
Distance: 5.9278% / 0.05927821
55.8 East_European_Hunter-Gatherer
24.2 Ancient_Northeast_Asian
17.8 Aegean_Neolithic_Farmer
2.0 Pontic-Caspian_Steppe_Bronze_Age_Pastoralist
0.2 Old_Beringian

Balboa
03-07-2025, 09:39 AM
Target: Balboa_scaled
Distance: 2.5114% / 0.02511407
62.4 Sardinian
19.6 Georgian_Megr
9.2 Latvian
8.8 Yemenite_Mahra

Rhegion
03-07-2025, 10:05 AM
Target: Me
Distance: 2.4388% / 0.02438790
34.8 Sardinian
30.4 Georgian_Megr
20.4 Yemenite_Mahra
6.6 Irish
6.4 Latvian
1.4 Berber_MAR_TIZ

Target: Father
Distance: 2.3382% / 0.02338194
31.4 Sardinian
27.0 Georgian_Megr
24.6 Yemenite_Mahra
13.2 Irish
2.2 Latvian
1.4 Balochi_Iran
0.2 Berber_MAR_TIZ

Target: Maternal_Grandpa
Distance: 2.2539% / 0.02253927
35.4 Sardinian
34.6 Georgian_Megr
15.6 Yemenite_Mahra
9.2 Latvian
2.8 Irish
2.4 Berber_MAR_TIZ

Target: Maternal_Grandma
Distance: 2.6251% / 0.02625080
36.4 Sardinian
32.6 Georgian_Megr
20.4 Yemenite_Mahra
8.8 Latvian
1.8 Berber_MAR_TIZ

Target: Cousin
Distance: 2.7811% / 0.02781051
36.2 Georgian_Megr
36.2 Sardinian
17.4 Yemenite_Mahra
7.2 Latvian
1.8 Balochi_Iran
1.2 Berber_MAR_TIZ

gixajo
03-07-2025, 10:20 AM
https://i.imgur.com/zoNy8JD.png

2WAY

https://i.imgur.com/YSqsOax.png

Feiichy
03-07-2025, 10:28 AM
Target: Feiichy_scaled
Distance: 0.0173% / 0.01731063

57.6 Latvian
26.3 Sardinian
16.1 Georgian_Megr

majevica
03-07-2025, 10:30 AM
Target: m
Distance: 2.7944% / 0.02794444
49.8 Latvian
29.8 Sardinian
14.8 Georgian_Megr
4.0 Balochi_Iran
1.6 Yemenite_Mahra

gixajo
03-07-2025, 10:35 AM
Just to compare, best 2way mode result of everyone of us.

https://i.imgur.com/02NFQFC.png

I don´t know why gixajo enana just use 6 pops and not 7 as the rest of us.

Wend-Kruzek
03-07-2025, 11:02 AM
Target: Wend - Kruzek_scaled
Distance: 3.5185% / 0.03518476
45.8 Latvian
27.8 Irish
16.8 Sardinian
7.4 Georgian_Megr
1.6 Balochi_Iran
0.6 Saami

:D

Beowulf
03-07-2025, 11:36 AM
Target: Beowulf_Scaled
Distance: 0.0142% / 0.01416759
33.3 Irish
31.2 Sardinian
13.0 Latvian
10.1 Georgian_Megr
9.5 Basque_Gipuzkoa_Southwest
1.5 Yemenite_Mahra
1.4 Berber_MAR_TIZ

R1b-L51
03-07-2025, 12:21 PM
[BASQUE + GEORGIAN] + [IRISH + BERBERID] = DINARID + BRUNN

Target: ROBERTOFERN_scaled
Distance: 2.0911% / 0.02091065
30.4 Basque_Gipuzkoa_Southwest
20.0 Sardinian
19.4 Irish
11.8 Berber_MAR_TIZ
10.6 Georgian_Megr
6.0 Latvian
1.0 Balochi_Iran
0.8 Saami



Target: ROBERTOFERN_scaled
Distance: 2.0909% / 0.02090912
30.0 Basque_Gipuzkoa_Southwest:6639
20.0 Sardinian:HGDP01066
20.0 Irish:513
12.0 Berber_MAR_TIZ:BerT8
10.4 Georgian_Megr:SMG5
6.0 Latvian:latvian54A2
1.0 Balochi_Iran:9AQ100
0.6 Saami:saami11


Distance to: ROBERTOFERN_scaled
0.06832914 Basque_Gipuzkoa_Southwest:6639
0.10022816 Irish:513
0.10352756 Sardinian:HGDP01066
0.17002424 Latvian:latvian54A2
0.18115224 Georgian_Megr:SMG5
0.21763609 Yemenite_Mahra:Y345
0.22989298 Balochi_Iran:9AQ100
0.24150250 Berber_MAR_TIZ:BerT8
0.24662123 Saami:saami11
0.60883287 Nanai:AMU-636

tk'es
03-07-2025, 12:45 PM
Target: tk'es_scaled
Distance: 4.7940% / 0.04793984
59.8 Georgian_Megr
24.0 Irish
9.4 Balochi_Iran
4.6 Saami
2.2 Nanai

Balboa
03-07-2025, 01:45 PM
[BASQUE + GEORGIAN] + [IRISH + BERBERID] = DINARID + BRUNN

Target: ROBERTOFERN_scaled
Distance: 2.0911% / 0.02091065
30.4 Basque_Gipuzkoa_Southwest
20.0 Sardinian
19.4 Irish
11.8 Berber_MAR_TIZ
10.6 Georgian_Megr
6.0 Latvian
1.0 Balochi_Iran
0.8 Saami



Target: ROBERTOFERN_scaled
Distance: 2.0909% / 0.02090912
30.0 Basque_Gipuzkoa_Southwest:6639
20.0 Sardinian:HGDP01066
20.0 Irish:513
12.0 Berber_MAR_TIZ:BerT8
10.4 Georgian_Megr:SMG5
6.0 Latvian:latvian54A2
1.0 Balochi_Iran:9AQ100
0.6 Saami:saami11


Distance to: ROBERTOFERN_scaled
0.06832914 Basque_Gipuzkoa_Southwest:6639
0.10022816 Irish:513
0.10352756 Sardinian:HGDP01066
0.17002424 Latvian:latvian54A2
0.18115224 Georgian_Megr:SMG5
0.21763609 Yemenite_Mahra:Y345
0.22989298 Balochi_Iran:9AQ100
0.24150250 Berber_MAR_TIZ:BerT8
0.24662123 Saami:saami11
0.60883287 Nanai:AMU-636

interesting you can be modeled 12% very conservative Berber, are you Galician?

ScandinavianCelt
03-07-2025, 02:02 PM
Target: SC_Ave_IllustrativeDNA
Distance: 1.7039% / 0.01703853
66.0 Irish
14.6 Latvian
9.4 Basque_Gipuzkoa_Southwest
6.6 Georgian_Megr
1.8 Sardinian
1.6 Berber_MAR_TIZ

Gergő Marosvári
03-07-2025, 02:06 PM
Target: Gergő
Distance: 1.4015% / 0.01401488
49.4 Latvian
17.4 Sardinian
16.0 Georgian_Megr
8.2 Irish
3.4 Saami
3.2 Balochi_Iran
2.4 Yemenite_Mahra

EasternLusitanian
03-07-2025, 02:34 PM
Target: MV_scaled
Distance: 0.0198% / 0.01983271
31.2 Irish
21.7 Sardinian
21.6 Basque_Gipuzkoa_Southwest
10.9 Berber_MAR_TIZ
8.5 Georgian_Megr
6.1 Yemenite_Mahra

Target: mom_scaled
Distance: 0.0248% / 0.02477734
28.9 Irish
26.9 Sardinian
24.5 Basque_Gipuzkoa_Southwest
7.2 Georgian_Megr
7.0 Berber_MAR_TIZ
5.5 Yemenite_Mahra

Dušan
03-07-2025, 02:55 PM
Target: Dušan_scaled
Distance: 3.7554% / 0.03755376
48.2 Latvian
31.6 Sardinian
17.2 Georgian_Megr
2.2 Saami
0.6 Balochi_Iran
0.2 Yemenite_Mahra

Fabricius
03-07-2025, 04:20 PM
Target: Fabricius_g25_scaled
Distance: 3.5384% / 0.03538381
22.4 Berber_MAR_TIZ
22.4 Irish
18.8 Latvian
14.8 Sardinian
9.4 Basque_Gipuzkoa_Southwest
9.2 Georgian_Megr
2.6 Balochi_Iran
0.4 Saami

Distance to: Fabricius_g25_scaled
0.10002514 Basque_Gipuzkoa_Southwest:6639
0.10775329 Irish:513
0.13080529 Sardinian:HGDP01066
0.16491890 Latvian:latvian54A2
0.18028713 Georgian_Megr:SMG5
0.21057343 Yemenite_Mahra:Y345
0.22009900 Balochi_Iran:9AQ100
0.22467682 Berber_MAR_TIZ:BerT8
0.23979568 Saami:saami11
0.60116646 Nanai:AMU-636


********

Target: Fabricius_g25_scaled
Distance: 1.4598% / 0.01459829
27.4 Sardinian
27.0 Irish
17.2 Latvian
7.6 Georgian_Megr
6.4 SSA
6.0 Berber_MAR_TIZ
5.2 Yemenite_Mahra
3.2 Basque_Gipuzkoa_Southwest

R1b-L51
03-07-2025, 04:21 PM
interesting you can be modeled 12% very conservative Berber, are you Galician?

My friend, I come from the Astyr/Cantabri, they were a first manifestation of the Hallsttat (proto-Celts) who arrived in the peninsula. It is assumed that they were pushed to the northwest of the peninsula by the strong true Iberians who were a manifestation of ENF with a lot of WGH and who came directly from Amphora Anatolia.

These proto Hallsttat (R1b+R1a+G) mixed in the northwest with Berber tribes (haplogroup E) very similar to those in North Africa and who lived in the western peninsula since the Neolithic.
Giving rise to the Astyr, Cantabri, Gallaeci (from which later came Galicians and Portuguese from the north).

This mixture apparently creates false red-haired browns who are actually depimented Berids.

In my case, I have become Dinaric too, due to the Roman contribution after subduing these tribes after years of massacres and guerrilla wars (the Romans gave up on them and ended up living and mixing with them) and later due to the southern contribution during the reconquest of strongly Romanized Mozarabs (more haplogroups G+ E+J), who repopulated the north while they were escaping from Islamist, and then mixed with the inhabitants who were already there.

This extra contribution stretches me and makes me more levantine or italian Dinaric.

But I am still a Celtic-Berid in the genetic pool. In short, I have both the north and the south.

Well this is my theory, maybe it is something else.

https://i.postimg.cc/zLn5H08q/Haplogroup-E-M81-1.gif (https://postimg.cc/zLn5H08q)

https://i.postimg.cc/D8M79Sx3/Haplogroup-E1b1b-1.png (https://postimg.cc/D8M79Sx3)

https://i.postimg.cc/34YhXmxm/Haplogroup-G2a-L497-1.png (https://postimg.cc/34YhXmxm)

https://i.postimg.cc/K4cF4PVy/Haplogroup-R1a-1.png (https://postimg.cc/K4cF4PVy)

https://i.postimg.cc/Z0fmN9tv/Haplogroup-R1a-Y93.png (https://postimg.cc/Z0fmN9tv)

https://i.postimg.cc/wy2p0M1P/Haplogroup-R1b-L21-3.png (https://postimg.cc/wy2p0M1P)

https://i.postimg.cc/BPvGy3Dv/Haplogroup-R1b-S21.png (https://postimg.cc/BPvGy3Dv)

https://i.postimg.cc/VSymN3y7/Haplogroup-EGJT.gif (https://postimg.cc/VSymN3y7)

https://i.postimg.cc/bZSqpq5D/Haplogroup-G2a-1.png (https://postimg.cc/bZSqpq5D)

R1b-L51
03-07-2025, 04:25 PM
Target: Fabricius_g25_scaled
Distance: 3.5384% / 0.03538381
22.4 Berber_MAR_TIZ
22.4 Irish
18.8 Latvian
14.8 Sardinian
9.4 Basque_Gipuzkoa_Southwest
9.2 Georgian_Megr
2.6 Balochi_Iran
0.4 Saami

Distance to: Fabricius_g25_scaled
0.10002514 Basque_Gipuzkoa_Southwest:6639
0.10775329 Irish:513
0.13080529 Sardinian:HGDP01066
0.16491890 Latvian:latvian54A2
0.18028713 Georgian_Megr:SMG5
0.21057343 Yemenite_Mahra:Y345
0.22009900 Balochi_Iran:9AQ100
0.22467682 Berber_MAR_TIZ:BerT8
0.23979568 Saami:saami11
0.60116646 Nanai:AMU-636


********

Target: Fabricius_g25_scaled
Distance: 1.4598% / 0.01459829
27.4 Sardinian
27.0 Irish
17.2 Latvian
7.6 Georgian_Megr
6.4 SSA
6.0 Berber_MAR_TIZ
5.2 Yemenite_Mahra
3.2 Basque_Gipuzkoa_Southwest


Another false Brünn (depigmented Berid), in this case not dinarized. HEHHEEH

Fabricius
03-07-2025, 04:47 PM
Another false Brünn (depigmented Berid), in this case not dinarized. HEHHEEH

Oh my father is and my grandfather was "dinarized" haha at least phenotypically.

R1b-L51
03-07-2025, 04:51 PM
Oh my father is and my grandfather was "dinarized" haha at least phenotypically.

You still have Basque, and Georgian (your father should have twice as much as you, since you are 50% of him).

All this under my theory (which could clearly be refuted by other members who know more)

Mopi The Dire Wolf
03-07-2025, 04:58 PM
Target: Mopi_simulated_g25_scaled
Distance: 1.4817% / 0.01481716
47.8 Irish
28.4 Sardinian
8.0 Georgian_Megr
7.0 Latvian
6.2 Basque_Gipuzkoa_Southwest
2.0 Yemenite_Mahra
0.4 Saami
0.2 Berber_MAR_TIZ


Distance to: Mopi_simulated_g25_scaled
0.06316892 Basque_Gipuzkoa_Southwest:6639
0.06843903 Irish:513
0.12205429 Sardinian:HGDP01066
0.14486046 Latvian:latvian54A2
0.18381316 Georgian_Megr:SMG5
0.23231951 Balochi_Iran:9AQ100
0.23320179 Saami:saami11
0.23857222 Yemenite_Mahra:Y345
0.27562873 Berber_MAR_TIZ:BerT8
0.61245977 Nanai:AMU-636

Mopi The Dire Wolf
03-07-2025, 05:04 PM
Distance to: Mopi_simulated_g25_scaled
0.02336670 35.00% Sardinian:HGDP01066 + 65.00% Irish:513
0.04054482 78.80% Basque_Gipuzkoa_Southwest:6639 + 21.20% Georgian_Megr:SMG5
0.04405966 46.40% Irish:513 + 53.60% Basque_Gipuzkoa_Southwest:6639
0.04728857 84.40% Basque_Gipuzkoa_Southwest:6639 + 15.60% Balochi_Iran:9AQ100
0.04995093 83.20% Irish:513 + 16.80% Yemenite_Mahra:Y345
0.05145606 55.00% Sardinian:HGDP01066 + 45.00% Latvian:latvian54A2
0.05243180 86.00% Irish:513 + 14.00% Berber_MAR_TIZ:BerT8
0.05433055 80.60% Basque_Gipuzkoa_Southwest:6639 + 19.40% Latvian:latvian54A2
0.05607279 88.80% Basque_Gipuzkoa_Southwest:6639 + 11.20% Yemenite_Mahra:Y345
0.05659864 82.00% Irish:513 + 18.00% Georgian_Megr:SMG5
0.05780753 89.80% Basque_Gipuzkoa_Southwest:6639 + 10.20% Saami:saami11
0.06065448 93.80% Basque_Gipuzkoa_Southwest:6639 + 6.20% Berber_MAR_TIZ:BerT8
0.06152150 97.60% Basque_Gipuzkoa_Southwest:6639 + 2.40% Nanai:AMU-636
0.06281974 6.00% Sardinian:HGDP01066 + 94.00% Basque_Gipuzkoa_Southwest:6639
0.06771730 95.80% Irish:513 + 4.20% Balochi_Iran:9AQ100
0.07175867 69.20% Sardinian:HGDP01066 + 30.80% Saami:saami11
0.09338517 73.00% Sardinian:HGDP01066 + 27.00% Balochi_Iran:9AQ100
0.09358409 66.40% Latvian:latvian54A2 + 33.60% Yemenite_Mahra:Y345
0.09531356 59.00% Latvian:latvian54A2 + 41.00% Georgian_Megr:SMG5
0.09980528 68.80% Sardinian:HGDP01066 + 31.20% Georgian_Megr:SMG5
0.10271681 71.40% Latvian:latvian54A2 + 28.60% Berber_MAR_TIZ:BerT8
0.11305702 93.00% Sardinian:HGDP01066 + 7.00% Nanai:AMU-636
0.11948709 89.20% Sardinian:HGDP01066 + 10.80% Yemenite_Mahra:Y345
0.12052896 71.20% Latvian:latvian54A2 + 28.80% Balochi_Iran:9AQ100
0.12197017 98.20% Sardinian:HGDP01066 + 1.80% Berber_MAR_TIZ:BerT8

R1b-L51
03-07-2025, 05:09 PM
Target: Mopi_simulated_g25_scaled
Distance: 1.4817% / 0.01481716
47.8 Irish
28.4 Sardinian
8.0 Georgian_Megr
7.0 Latvian
6.2 Basque_Gipuzkoa_Southwest
2.0 Yemenite_Mahra
0.4 Saami
0.2 Berber_MAR_TIZ


Distance to: Mopi_simulated_g25_scaled
0.06316892 Basque_Gipuzkoa_Southwest:6639
0.06843903 Irish:513
0.12205429 Sardinian:HGDP01066
0.14486046 Latvian:latvian54A2
0.18381316 Georgian_Megr:SMG5
0.23231951 Balochi_Iran:9AQ100
0.23320179 Saami:saami11
0.23857222 Yemenite_Mahra:Y345
0.27562873 Berber_MAR_TIZ:BerT8
0.61245977 Nanai:AMU-636

Alpinized Atlantid?

chinshen
03-07-2025, 05:14 PM
137845137846https://www.theapricity.com/forum/image/png;base64,iVBORw0KGgoAAAANSUhEUgAAAZIAAAD4CAYAAAD GmmByAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJc EhZcwAADsMAAA7DAcdvqGQAAI9QSURBVHhe7b0PfFTVtff9SzI JE3CMA06AEUacAAMMOGAGGWQoQQklPIQarPEaPoa2aYWK9ZPrE 1ssL5dLealUuZbXihZtaokPeBtvoSWU BgupBJrKOFChCBBSHHQQZJCTAfIkEySd60z50zOTCbJhICSuL9 8Njln73323ufPrLXX3ufsFfXwww 3QSAQCASCayRa/isQCAQCwTUhFIlAIBAIeoVQJAKBQCDoFUKRCAQCgaBXCEUiEAg Egl4hFIlAIBAIeoVQJAKBQCDoFTFWq/Xf5e3 Q7QOltR/wb98045hrZ i5twVtMpJgt6ghWG0FROMg9D4RT28Lf5YzXAHvp39L0idEAd39 Rk0 PzxQdyAe6KfnI4lWfMxWV PUx9fQJMcLxAIvlz6jCLRmlOx9KkcPDj3ATzwQHuYNeNe2O 2YtRgHz53nccVFm6xwzBp5ixMvlOPAf88g/ prkM42Sah0cE85V5YTfFovHABVzrNeBPwFbVVO9yG1IcexbcXp WFWshXjJ92D 74xA/dYhiHukhuuthG4b7oViajDiQ9P4kI4id6TexIhurscuO9uEwY0 1KDyIze84tNageAroc8oEo0 CffYRkF3qQblH1Tgo9M1OHuuHo0YAF3iCJiSrLAam1BT7YLnag M //Q8LtZ jIqDR8MLNgXdGKRmLIJztBZ11VX49NJNbLt8BW3V3829/m/COnQArnz2MU6ePIFTrlp4mjTQjxyD8aOHobW2AUNGm6G7 imOHulEkbT04J5EyKCRNtwz5naq/wQOHxeKRCD4qugzS6SwRZLzWAoS68ux7Y0iVHvkBEIzxIb0xYt gNzSi t0CbNt/EUnzFiNtggaf7C3Ejg99ME fA6fViMG3xANNHlz83IWPP4/GBPskmAw6aKh/7PU0otlbh8p3CrHvsgWz75tAaYOhiwMaL9XCVVmO0oM18JD85m GVzJQk M5Uwa0ZDtOwwYhvuohPqg h9IMq1CuCMloHU7IDyePMMA6huj1UzolDKDtQjXrukutMsE93Y IKZ2qZthue8C9VUT/nx4B67dmwqFs9PDtvW4hON0I 1wzllLIxDqR0 D2rdp1F1oByV57zQjUtFRspYxLoPYOc7FaiLVIgnWJD WBYcw4G6w0XY kc6NtAoDYyTnRiLkyivH4sl2akweqpQUeNDotEInYbacKYa5fv LUSONdWlhUd TEzqkPEz3TFeLqlMeUkomJA6iy3OerIvyMlR84r/BGraGvmGHaaiOyqT70EDX72Qlyg9UAcnZyJlvAU6Vo qyHsbO7gFbclOdsI8zwZhA1lwDWVEnKlDG95KaFvG9FAgEYelz Fskgb8deb2vjeVyAEdaxI0gYX4Hr DkMsjpx76hB8LiOo a2b DRdBJGg3UYEB1FhQ2C8U4z7rytFc1R8Rg0cACi0Qpfkw tvis4/3kb7p63APeaE5GgG4BYEkQJQxIxwjIBxqhP8VFNPeJ5WGWKCcP uGAXT8NsxaABZRpTHmDQJk0bEwH2yBvVteti 9V0svt KEbcnID4mBoMMRpjGWDHe4MWZ2gTMWfwYHphoxO1UT0zcIBiGm zBmohXGphpUnfUE5hE0Q5Jw9xgjEgaFtPVUNa6MeRBLvu3EmGG 3IyEuBjE6A4wjk2CdeBcGnK GxzgDs6it gGXcebDExErEp3lG/imfQRiz/0VO7a/B5dXTpBohefzMzjzOQn820bRvUmCPoGu0Yhh0FMbB iGYJhpDO4elwiv62N8ejkWI2zt96Ty/CBMmn4vxhiHwTRqBBJJwA IT8AQOv/xkyxIuHQapy7cBueib2P2 GFIoHsURRcjfvAIjBozAvENH FMtAX3WG6n6z4CIzq9BwbYH8pB5kwLjIMTMCBmAPSJdA/G3g3LbZdQfdINzZ0R3Mtm bQFAkEH oUiYa40DYJ5ggXD4q/isxMfw2e6B9Zh0bhw6mNcGXEv7CNjcGZPPl7aUoT3yv6Ko 4vUHe8FH/663kkjpuEYS0fo2TLZmzbcwin3BfQOECHmE/L8Ic3/xNF w7iTKsBY0YNw 3xTTh77CQah9lwz9jbMeCKC6X/ Sry//B/8dePm3B70hgSaglo/fwozujuw4MPjEfCVRfKCl/F638oQVnlecQONSL ihv/vG0KnJOGoPFEMX736wIU/XcpDv9jEEZZkjBySDTOf0RC/6r//HwXanD4o/qObW1OwpwFs5A08DKq//v/4NXf/Ql7y45S2UkYYzJiyMBLOLz3ID71XsGZivdw PNIu9caDLPNhMM8CPUfvYf/Pnqh0zmNaFmRJER7UF3yO6kNe/7nDGKGjoGZFIuu6SyOktVx 3i7fE8qUfn5AFimTMIIXSvqPvwzfrf5/6DoL4dxXjuCrrMRiQM8 OQfCUieYYXun5X4r1c3oXBPGd77n1O4cMGFo0ddAFkr3d6DBAf SUywYdLESf8p/Fdt278V7Vf/E4NEWapserWePwj3I2m05J84Ls0Qg6Iz 8/pvayN8Svc96Kxa0HiJ0qCF b5FyFmShcz5Dgy cAQVNarxsSC8qDlQhqpGI6Z9KwvZj2VgtlknpWji4qGJlTa5U0 6960ocOekvx/tZJarO1FP98RiccDtGms1IjPOhrqoMZcf9eXwXqlCcvxGbd57B rSTotdQy3yALUh7JRvaSbKQnJyKWJLZGfyfMw7XSMV2hGzkWd o18J2rRNkHNdRywleHI/vLcZqq1A03wxRfi8p9JSgnYd4jlOsZKfU1qDzi8rehoQZHTrjh adUgPkGH M6etKZaVB8 AjfLaV89qo9Wo5YK0AzSI67VA08jbQ xIvXRHGQ/moHUsUD1oSrUKdZRd/dgFN8DKhpkHc6je0nXOGueDfpWushxg8kaSiSV2V05PJwoEAg6 o98oEhaYiSTrfVfqUX9Jfi9V4ipqyopQctAFT5wBprFW2GakIf vJXOQsIIESI2dTozXC fASEjhO2O 24M7hRhgMg/3CkIJaqPAQU6CnTsLI55P3o2Og1bLG8aGxgV8KCCFai9hYLokn rc2wjLX4w2gzDAM5nQTwoHgpa1doBpBiozY1eui8VZ1mvg4eL7 UkJh5aEqQ9xwdPPZVBikBvNMPYvU6jc2 EV6V8 Fow3L5OIYEuZ/PD14/L4OvcUImSd0pRfZ7UwB10jSbakbJoKZ55IgtOc3uDur8HdEsNJ piVazyWlKuBj6drPJAsTylHV VIMQKBoBP6xU Ee6wpzokwaHyoPVkFeZ62Ha8b5X/cjPWrV2Ll2k3Y9m4l9YD1MNvssCV2vATaETbYzHrJeij69XNYu 349NmwpkXr4kXMVX1y4SIJIS4LYBDIaAmiHGKGPJsHfQAVSr7t 69yasXkltk8PaDRuxYd0GFB6iHnE3NNbXwUMKJH7IcBj9RpMEC 85EHVkqjbWo 6daUkeOx1UDdwNd3ztscE4305kEozPbYR nj6C3fu39 frjJSh4aS1dl9XYkL8DZSfroRluhX1yEgbJeTpHvgekFOo/3IENq9qv8Uq6vhufX4uNO6sol0Ag6A19TpFotIkYOy0FKbNTkD o/A1k5y5FLPVTHSC08NWUofl8e3gkwEJb5OchdloW0aWbofG64Pq sP5PE1k8VAPVHEDyarQw/jBAemGEIuy0ATHN9wIEklqLunBXWnTuITEsT81tTiR9PhGG2Ac XIaFucsRe73UxD3qQt1rTpY7s/EkkUpsN1Bym1aBpb8YBlyHnLAGGpJhGnrxJizqHF7oTHYkb44C 6lTLbDNysDiB50waX2opzZcGJ6K7GXLkbPQDkMPrBNf3TGUfVC FOh 1cc5iPPk4XcMZVpjvdiL9seVYviQDGQvScM/gG/MYxQxzIOsJajddG tQDeo//QR1l1kpUlBZPp0j3wPS1/qJachanA7nOLIuxzqR b0nsWxJOmxD5KwCgeCa6XvfkQzSY8RdSUgyJ2GUyYhEvQ6xjXX 4uOLPKPzjX/EZjyFFDcAwZWK3hgRpvAnjLRaMGX8PnLMfgHPKKOhjPHAd3Is9 FTW4nHAnJphHwDTRgXvvtsDgq8bRz3UYZR6F8fZZeOAbdozRx6 ApSgPN1fOo p8qeAzKNwxHcfj4efkbhgFIHHcPrHcMQMPpwzh87COcqY/BECOVfecoWKZQ Va2Ti7jzKG9eLesAu7m2zDMZKb0JFin3od7LEYkNLtR beDqPy0/a0tiebL8N0W3NZhmhr835KPgNuNuPNOE8zjbLAmkcWjvQz30VL 86Z1KxIybdU1vbbHAbjj7EarrYzHsDhOMw4bBNGYS7pk4BiNu1 2FAUx2q3v9vvPf5rbjbltThO5L4OybBbkkE/nEch6ouIGFcmMn2eA/OHK1EjfQuNPVsbjVh8uQx0jU4ecYLw gJsIyxYNI0ug8pDowfPgitdR htOSvOJ9gjeweXKB7cMcI3EX3YIztXjio/GFUr6vyAMo/qkM0WVxdlXPpwlXEj0zCWHrm LkLDkYMbqknyy3iiyoQ9Dv6jqvdgUbYbGNJQMr7PIbddAl1rmq c/szTPrYtoYF 9GRYh2tQd IIqnlmVmuAxWrB8Fs0dFw9XMer4Aqs5aGFYcJkWHjc3FuHmsoq UCcf2jusmMxDXHU1OHamEXdOssIAEvKHa9Cot8A zgDfuSocOVUfqF9ntpFlEU WwBFUnZPtHv6OYaINpgQNNfoSzp085m TgtYI6xQzWQvUtivnUHO0Wqo/POHbyudsGEvxw2 BptWLuhqq/zO5ED73SUnQfl6FyrM9Gp9rh87BOJasEaqXB6p8DS5UHa/xz8vI7dc3ulD5oUv6zobRDLFg8gQDcJ6u0UkPdOp7ciEWprvpm pBAr6mshPuK/xhuq9VmgZ4sx8pK/3ceupFWWEcZoI324dL5ahw7USdZlBpDD 4Bf88zkdrPDxDdA9fJI6iRP4rpupxBiKNOw4wpI6h OUENXWvX/q3Y8m6oJSwQfH0QPtsFAoFA0Cv63ByJQCAQCG4uhCIRCAQCQa8 QikQgEAgEvUIoEoFAIBD0CqFIBAKBQNArhCIRCAQCQa8QikQgE AgEvUIoEoFAIBD0CqFIBAKBQNArhCIRCAQCQa8QikQgEAgEvUI oEoFAIBD0ih4t2ri98G15S9CXWZT5sLwlEAgEvUdYJAKBQCDoF UKRCAQCgaBXCEUiEAgEgl4hFImg/zDSgbRZVihONAUCwZdD/5ts9wFtr1J4ngLtRs2m8BKF2/zJHfBSvp8CrfKpRT1M2pWOlfzJKoTkwTDK92PKp5qzbvtVe52c Hv1LyuOUkgBqT8vP5e1JQMxu hsuTkE5h1coXPJHSfX9yL8tcYra8zSlH5b3x1D6bynfKNo Q2kz5baoiN7vT7 WyXbd3WnISLEhSR/vj/B54P6oDCW7y1Fzk/iYNX87DzmTPChZvRmlctyNJxVLV5pQ/R/5KO3sOmhTkPO/7fD8aQMKj8lxXxpaWOdmIvWeJOgH GMa2U3y/p0oOeR3WYy5S7FqZDVeyC/t1F2wdnYOnpniwfYXC1ElxzERPRcTM5H3kBU6edePB1V/ Cquh BG0O8skrbvkRAl4Rp9lITzx/SXFEnrXRT/hZxBDQtsFrjDKe9H/hBF3dmW6f40BSkPlRHzdwpnKRRRJCmN1tfl9Kdoex/VRfUp6W3/SnGcj/mhHE95QH8lwsUxcpukc/hAzsPnkSanM1RuC WJojoCbSKlEzVCTqdzb6PzluJVQVIyPUYL yN5JAhsiD zB1teeQ6r12zA5qJy1A5LRc7jadDLOb9qav5rA1Z qUqE0UAz0IyZi52dWkK2h2fCPDAeWnXn5EvC9OCTyLonFlU7X8 Zza1Zj9S9eRtHBizCOs8o5CI0GWvNMLJ7R6Rkg8z4ztPF f/1 evBcmAzQXyindKo/EIQS6U/EWK3Wf5e3u Wjh4/LWzcpJJTZapAEPf8m KmfQgL0nxR/wK9UgthE8XGUny0D ssh6gEKu0gQk4qNIktB6vlvoTwFtK2o3VsojZRPazFFZVDe fSXhHcUl6Gk30PppNSic U45iLl/T3FPSHvM6Fx XQcKT2pPuV3zecx2L/Jiqb1PsrP1sVU2lfadDsFZft/qMxY2iVlE47xb6uESDdoZyzBEgfwt9/8Ev950I36K6xhm A578KJg3/DXytP4JJK6SLBCPt9KUiemIRETQNq666odbKEbqwTD0y3YfxYI 26t/xxuqUyZcU6kj4/Hydpo2Gc ALP2JFz/8CdpDVY4vuGAbZxS9kg4FoxH/EkXLnAG5ViXtEdoYZjgwKxpcl2XL8DtaZLTCFVd1mmz4LCNR5I hCufPXqAzjJQxuPeBRMQPGIFhnjIc/VyOVhiZgce oYO3ORaXP34Plar09vMJ0zYmcC0tMCZcwgW3FnfPnQHjpRq4L3 MGA zyvucOuqbJiWg4fRF3zUqDdZALZ pM OaC 9B6bAP 86/yffBdQd3ZEzh09Ez7fRlzLx5IjEf8iGFoKDuK83K0gunBxzBL5 4Uv9jKq91dK6T15LgzWWZgcdRzvVbr9EYJ R7 ySNp2kHAl4R2KFEfWQ hQj5Q/S95REfUDSntL3qFefBQpkw4WDfemWHgrhPY2SZnwEFMbhZ7A9U apFU0o5ZSHleM4eT8cn1J6Z53LHmFA6lQzGg8XoZgsmo544VWN hWiTs7Di6Rw4R lIKRtgW7AMzzyRBpOcTiIJqctWYcXDdhgpi0ZvxZxlzyDvEXt7 b95sg2PqHCx/ZhnmTDLBKHVrtbA mItnn1oE 3B12XPgIIVklg4k FibsmdH1opnsWy DQZS8Br9ZKQty8Py e2t8deVgqW5y5BmM0CjS4QlJRsrfpxFffCecBHHDnlguT9Dda6 MAWnfmkjXj3rpcoyCaf5yPLMsHTYDPTi6JDi/k4cVi9uvg2lmDlbkLcWc8Xp6tHRImpGDvB9nwjnVgQnUifFjxA Tan/bQCuTRNTUPN1DOiUh2OuCYkkTpbnjo/gw2qK5vZ9QfQ8U/LUh9MPgMMDQN6ZMaUXFAfQY9ey6Mung0 xrlPUF/pF8pEhbcPD/RgdEkWEN7ikQbD2WFyz ewt/9m6wgot8lK AuCo/L4X6ghYey/s2fJYqtkuf82xLUE2tjK4eUUBtZKj1BahMpqLYXqJ6RVA F1mzal3vl0jAYD2GRIpPawXmovYH5G4LLaPuZKo3nUkgZ9hwLE hO8qD3jkve7QJuCJQtMcO98ARvf2Iai7QXY9PwWVEQ7kPmIRcp ieYQEYdwRbF63EflvFWHHm5uw/ncVaJyQhsXTpCx hgyGZ/cLWP/SJhR QPuTM7GIlGfFa2tVZb AYo ui2G1CpRtzcfaDZtQsJ3r2ogX3nUj8W4nguyxIYloLHkBG14pw I638rFxXQGqKIdzfs80sfedIhzBZKTPM8gx3GtfCHvcMRTt9sg xMuMykUnWZMXv1mPTmztQxPX RxHcI9OxZDbVy8J7jhHuPz6H9dyuXduQv3Et8ume6wfKZQTQkn VWhXy6ppu2FKOGzrtg3Uqs38ozGV7s21sBz6gMrFqRi5xHU2A3 GzpRKl4UFx0BbOlIGypHUU7nAjvij5LCkCwghR48F4RRpyUrNB NrVq/BmpV5yH08G2l3B8 YCPo2/UuRyBPTERNu3iQUVgok1DGdBHwqhUcpPEyBFI0y0R3Fk9wHSWj Hy8Kb52QoXzTPtfQUUnht36VASiia5zaoHmmeZwzF8fmxQqR6W 39MdRZSOufheRaes/klF0DxL1Icz/lQmziNh haWaFU NMjRwNNV0/I5GysWpnt771Pt8DYUIMDDUaYR5vloEF1lQvxd0ygPqwZtpE6u A4VIUj8nC1GGSk500TlzQSivhplh9q7tFarERpXBYqCer9eVLx dhTp5Lxyus1STlmqW22M8V4t6nT7YagipC6hG1TkvBg/xK7/IcWHH3mrokhfCKUlqGzJTjPhk747g8yXMNhPiP61C9QDlOlEYc REHTtXDaLYDU6itDcdQHNQuqmH3AZy Iu8E8MFNgr4zke49vgMb16xHwf5qNGonI2VxLlatXoGcOSGWB3 N2B0pO6WBfIM/3kAKfPewTlPwxtPQePBdE2Z/ykf/mFmzZSuH3Jaj4B9XxMCm2TudkBH2N/qVIeDI5nDJh4RvmmY2aSMI5nDLh/ErHknr6rWSV8FtVkgLht8B SBeOhfd8Op7z3EZx2ykPWe/KxLY0OU4CX5pn6QFSm6iOwBthPGRGiiU6neJLaJusK7ZGWImw5 SLBb4m9Remvyfv8hhpbWnKIouNjKI3fAusZLtR7NIi/PYIffDwJF50Jc amIU0dxmtx8YIXOvqnHeBDc1DP1k91vQeaeFUP1euhnnU7muhY JpCevWMl8qTNztiQurjK7Amd7GqPUkhbw4RIXX1iiPbUfa5Ec6 HbDA9mIo7P9 HQurkh6KLi4fGMFnVLn Yk9iM2gbqufCvsskbRkmGO1sfGuvlzU7xoPr9Ymx7YyM2rCVr5 R03DLPIKuJnKYTKP5TBPcyJRZNNyLj/TrhLC1Epp7XTg eC8HxWg5pTSqhE2fZN2HK4kRRq6KSloK/SrxQJWwxtqiGeABTHvfwoeVchioR92055R0XbNkrLkHc pRDOsuDhJe4whhkyk6Defyul9/hNKf5thbP6WTlwfVPl8wj9DfMEPynF0HmgAHy8PPkZOTXYd7wW xmmZsHcnM9weeK 6seeVTdgUGqQhl2rUNWgx2NQ 9ONHi5kj9Kivq5b3O1L5aS00JluHNmipV50ob3eALJxkgxtF6z e2t O31SRSbyRelG3dj/rRi5DD8wq7yqRbFkr1hYtkDVchX32NlPBf5cDJOtQbLEgn6zaI cVYYOwxt9RzPgR2ouqCHIYwigbcMW/9aD0tGDiY2VWDnHOoAfPRSfUNskKU9Av6F 3knrxPBzU oa8z/BcwtMUT0HZb6MgQXFRr1N6mbzP7KB9nvAmxSPBlgV/H8IKRc1zFMfWCff6WUCrhTS/6UUWRFSPLQA6hoesXgqpj7b5u5IofguLLYwf0b48P6PAcyJtbD Fx3eo5FYa2W39OaepXiCOkbncRyuuTkPHU0uBxba0B9tGJksEk caQUFVcsyMhJgVkRLpTH8Wg20iSB6MW D6qhnbIYGYFytDDPXQLH0FpUlXZhF wrRnlDEtKfzEHaVB4KssG5aDly79F3rRs18dAGBJ0OjkesAUPz huEtRfHhWtRWFqE49PUnGe/eAzh9mxPLFtna wwJpDgekwXzqZ0oPaWF4zvLkTHDJg192eflII8nwrt9nUwL66x 0pEzggmzIeorKmG4O6nfopmXAOqQOLnloNhQvXe Kuloc VNxp0OHET8Xk7OQ 2QWHIGHgrKYU7B4ogF1rh6PtQpuUvrfB4ncK dvSYppm59d6qlH0zYPGTFtmZRGcTG/9e zkGahL71dxZ2vcZS/hPKr38giRdPK8xY8bMa/EP7Lw088N8I9fcrfspD 8jGcRn j36Q0B22rISHfQpZOjHoCPlwcKz ewFd1BqPp0gfKI nZRgqHFZ7SHulDSlZcvE KVJpgp03pGpAi4XkT5YPGnn QqINtYRZSbSbo43zwUf0aqsdDVkT5ru0oVb4801qR/r102IfGUwNon7opjZ VobCgJPBxmmlmNhalWGCIpnK4G9PoRlnhFpQoGeYvxzpzDVa zDdQDbVhXgYcYxOlNtSfp7rJmnT 2IyalZsg5Q46lr9zWIa0cfzWE Mj4X4asVP1qA6bvx3bY6uwEDux9s2OgzodScPydao2hMWG7JX0 gPx5LQqUoa6RTmQ/NBtJemqddK3onE6UIP tctlqIiU7PQ2zp9wJw610rc9/gkN/OYuxj1JvIFBOmHJhp7gMGM9skybcdXenI2vuZJgSNNJ9Q7QGms Y6VO7LR EB2T7r9Jqr4HmP/wXsXFegGuqK5LkwwbGIFJvNSLkpTyvVr/Gi7rj6XAV9HbGM/NeQfrOMPAu3b8Vi35p81vXXn9FpyJ5rbrca1FyuQbE0ZPcloiW ltcoK90sbsKMTa0cg CoQiuRrSN9TJE7krJoNbdU lH1Yg5o6wDA2GWnzHIg/WYANv 98fqVvYkJG7hIkNVSgdH81PqnzQHfnZDjnOpF0aR e 3XnS5kIBF8FQpF8DemLFonW7EDqDBuS7jBKa0Y1NrjhOlyC7X p6Z9CNcGGlPl2TObzHaSB73I93Cf3oXBnpRgOEtx0CEXyNaTfD G0JBIKbAvECnkAgEAh6RY8UCWcWoe8HgUAguJ4IuSIQCASCXiE UiUAgEAh6hVAkAoFAIOgVQpEI j9aK1LmOUJ8hfQNLDPT4ezK94xAcBPQo9d//9hXXv/lJUTYJ7rsQ51X7I0J57e9BGhWOcLSnKU88rbkB0TeVuAlUWJS5 R01X1B XneriPLI7m7DHc ElsGLTErtlBd/jEqndHab69/1L6HCPlA pm1e7uXnlC4vKMnn6GO/J8wkaj vUMzb6mOIKPbnXtDetgcjfP3XsigXGYnVyP91mDWXhqZh6RIjq vPzUao4JLxZmbUUa bqUPXGBhTStbkxWJH5NN3Y3RtReEKO6oAFmblZ0B9fjc3vylHd kPbkOphrVmKT2qf/dSSie7zfA/vcUJ/rTOd 19nJ2ZOp8ah4Xf18pGLpaieM8p6C 4PIr4fg5qRfWiS81lbLYRK4R4FY9qNOQt4Xzm87/e5jSXlwiFYvkkjCpo2UDisWJZ1DWCVCSquV43/WLqgZXkpefWwsr4M1jPJQWxS4nb7XKe8OOQ/7X39KpURIIPnYN/sqf1osLyNPisPH/lEIXs5eOo59jtBfCeUYUk7SMXz j9H1IEUjrRXWA6p3l8E9xIFF7GwpCC1SMhzQnSy5 ZUI85fNWL1SpURC/GVcHzTQxhtgmx/qJbEdw/w5sBp4rSk54iYgonv8QSE2BPlbfw5FNY3AhSqUh1EiGJmGnAUm 1JZsDX4 Jg9Hou80tgeVJZRIf6D/KRISqj4SnhplQUX6ffBKvhoSui0v rN0Cy/8SII3INC7gFfhbc0kYU2WRKewxfI0tYEXg1SESBm18yDFsRWhK CBKU7vQ5YUio7bJyoePo3wxrEx SmmdKQU6XnOOjrHTNh8jn3/MFDpmv5QjcrwVKCx1IfG 4OXCtTMWY Zt1SqHRzoYp6YgfUE60mZYYQiSSexXPBX2oZRrrBNplCd9nhOW BDmZV4udTXEUnzKVF/YLhf2uy8fNtsOoHCejDP2w/3PnPC4nDc6xIaUMtSN1rl1a deQnIr08YNJmA Glctc4G bn67r6h4fvIOCvSQG0DqxcEo8PB0Ub/u14 tiDb54ASI7Px0sM9KQmizXzz7f5Wvb4b6MdEhLzJgivsftaJMz MecON4p UxzGoZYJGQ87gIPbUBDimAuDYqHx1KO/LWgj6IeKpKd 28NCgpgFcLcUkeggwR7zjLwfDsViISWmHlprY8dUbH101jv9nI 47EmzBSFAZMY9SGtXdI3jc4hrWUPe vxMV9UmY85Dcf9fa/Z7/Srb7V4Gl/awf5yFnBjuN0sBgS8eyZ5bLS8czfr/izodWIPdB9p ugd7sRFbeCmTNTPP7Zme/5LpETJ67HHlPBvt4T3viGSxb4Pe7rhvlRM7TdFxy 80x2xxwpCxF7rI0yf 5zmDB7MdWYMWjKntj AQ4pk7oMKQSTPd1dY8PnxxSe0lsx/bwbBhdJahSLwN/Jy/CmIds6dpRnSYnMp/KRXZInfGmSM5vGjLpPmRONWO4QSf5hF/1dLbffz6VbpqRidzc7ICy0NN1c85MltwOd3uP1UjWhhHukkJUd FibRgv7Y1mY7C1H4e4wPhsTtND4SNnKu4L Q4zVav13ebtbTjx8XN66eeF5A8wiARzqKXUwpZHAj6KzDWdptK 1pT2sjK6H1/6OwmcIvaZ/HvEkwBvl35yGkb1On/wDF84 T51s20QX9pj9ZoS2PrJG/Uh6yCKLGUyAhJcXL7YyitJYsCr guF0UN4PiqK1cfgtZENFP0D4foIaH3v5JaZRX4iK18/ed5GVY4b1PbZPPb9zbQV7Lu EKTn2ugz31Xpg /yt8s7Iwo6kMr/ 5hsSmFinfz4H1YhFefO3POHzyBCoPluHMLfdi4ey7cO6vVbiAY bB9wwaj7zDeePH/4L2P/HnODXMi9b6RqHv3Bfxq yGcOHYY5QebkPTADCRdfQ HPyNr45EfIO2WSrzxy2103EkcPVKOv3nM OYCO133QzhDSnrMvQ/Aov8cuze8ij/9zwkpz3vnhsGZaoHurwdxivJgmA2zxgLV ytRc64GJzVjMXN0I8ry38Z7J2vgvhxZXV3D50kP3f/ko/LWeWQ1NKDsqLxE78gMPPYNH8qoBz/gngegr9 Lgzx/1dCA83//b/z53YM4epLqPFSGGr0D3xw3CHsP sfhIj6/ySPhO5yP5wv2oPJUPRr eR5n9vwZ/7fiKE6ePIpD79cg4d5vYvwgqpuK9p4sx969dLxUS1f3WI0ZmY8/iDHRF3ChMQbez124cFVOIkzzl JfxlxA0at/kNplfSQPSyY24K9V/tkXK53LpLvuwqxvzMbsFAcmWy0YrmnAmU/rQ oR9DX639BWD cBwhH1A3l 4aA/8OR2K1kGLez/g5En19ndbsDK4G6W2pmUTNS/URkf C90C1kErco4PVk97IyqhY7R8FzOWfq7itLZtzrnuV7dtnJSIo9 T2TysJkf1mLNF2H6YBMH8XKSPU3v c8AyvB41By/CqPgep6A5WQVXvAkTAkNGHf2KV590w3vlE1SqPfB5y Cu10I7hHfYx3s8XFXV0KjKNjYcQE2DEUnJ0hES9afKgnvHJ6rg vjIYhojfdoq8ru7xomxXBTyjU5EhWWUGpH1rIhoP70RZh3taB9 dZikxo93OvuVAPr94QNH8T0fn53DiyS3WFz7vgomN0dyjno0F9 gxeDDeqSVXR6j9W4sW97PvLfrYJniANZuWR5yvdYm5yNrKn0uG 0tCLRVExePeLJAFU6/W4j8LbLv9q2FKKsBkublYNnCvvg nUBNv1Mk7No27KTy5xQf6SjFLRTY pADexbUFJOAf5HKoCgeqmpjb4OkAFrflsN 2iflw9uSBaPAiobaxBPjmudJcbzkj2brpG04xfGwmPJbI UU83N/GTwfEhVGMUnwxLpqmKxTeL6InWZ9RGVFkr8LXH8swel40oSkEN o9/8VDo9HBdH w7/G0uVZoL9TCGxjKD NXvMX/p3Of6 zjnYfKQsueA0NTLTyqV IaPb31ChJ5XRFxvhhFlcDk9DSYZiyEPe4YinZ3eCfKP4T09Cqs kFme51TDIHHQSGi82tqhPoS8zxG3qpVWPpQ /lMNnQ2juon/D1W40VdTQ11HEqx442XUXY EdYUs/R2V85CC3wuNzQ2/5wMB6teA43eKm3zPJa3Tu27vQYV7 Tj5T0u6Cc4pSE2Qd l/ykSFvIsiEOhuHB 2yOGBHGU3NNid7jR1 C2VvLzLr85JrnNZYUVAgv8Nl4nnJUPKb7W0LdifBT3egT1F5GQ zro SsRPJeoaSKh51XaFG54rzXDvDfE7LoUCFCvW1zXBPt6pN34sP0 zZm1BIVt714/rX5fpjEaoGOpAz14hP9u4IMylNpEyDzXcEL2xQ ZXf774uwzyzp9ngO/wCNrzUfh5l57orOdw97gwv6ht9ZHFwb6EOJw Wo7qu5y33XmmEL4YUjrwv6Jv0v6Gth0l4Uo 9JcRvu 9pilf8tvNbWZ15FSVrpmURpauFICmQ1p/SX rdsyKS3NqGBlYMd/m3eQLdl0llqC0KKpf9pgcUACk1HhprKZf3GR4y4zzz/bv87Yvk4lcph5XI9yg8SnlUrxp3gJXIE2ToXDcl0hmVKD3sgeX BHKS0O2qHYXoWsuf3driCfbyfhn7GMpWPd7IdxqYj xF7RO9CdMo5DxoH6mCUCtFCq70RdVVjJ5VZX7MPhQE3uGHQaJA ob0JrRvr0pN6dmwpNXKBkKjod01R 0wNvbcm7XWGYvxx5j6fBpnqLja/NNDJG3CfJ9DpfgZJdRSgKCVX1Pvjqq6Ttsvo0LM0N8e eYEPGzCQupOOkvqBP0f8UCQlxyec6C9N4CnoKJLyjD1MYLefhI R8S1mHf4GJ/7j8kYU3HSMeP9P9tJQtB829ynu6gemLo JYxcv3D/X/ZXzy/cSVB7ZT8tP9ITud6SBHx210xTikHkA7EkgLjjxsD7bid4l6T08 Nxhs6N/ceT4vJNko9TQmfn3Atcu/NReEwLx5JnsWb1GqxZ8yyenKXDuRO1co5rx3uoANv2XsSd38rz l00h75Ek M5Uhxm/7wHni1F6XAfnSi7zWSybZ7ohdXnfL8DGLeHmGmTeKULpJQty5P rW/GQREt3u3p2bTHFRKTxjcwLn8uyiRLg/ay9Z/dZWd9TtLUVlswUL89ZhHZe3Zh1WPEZHHtyOrQfkTN1xfh/Kjvtg dYKrFvrb9O6H2fCcqUMW99S96YEfZHWW7oEsi/bJdoOBA5hPJnbw9XYdDrxTyOw0CwdcWoUi hghFIhAIrif9b2hLIBAIBF8qQpEIBAKBoFcIRSIQCASCXtEjRS K9 ipCnw8CgUBwPREWiUAgEAh6hVAkAoFAIOgVQpEIBAKBoFcIRSL 40rju/sfHOZE M9RfQChaWGelwTFS3hUIBNedHn2Q Keb/YNEH/x zJ X92cDmgh8tfPaXAGNegpB/s4xhdJfpHReXqWr49R8QW3gZeaLKKjXxApt3y3UNl4T64e0rV6 1jtvwNLXhsLw/hur6LZU1St7vqo28RMrM8EuhRO nfFTGt3r0QWJ4P9uNDS5UH9iH4g9qIl7S47r7H5 /HOvMNVj5cmcLpzEpWLomFbqj djwXxGsojt3KdaMqsHq1 hmf4loJ6RjyfzJMA7iB8EHz7kjKPl9ESob/OlBjMtE7iMm1P5pA7Z1so6X1uxA2hwnJg5nd2OEz4PamgoU7yh FjXTD2Md8Jqzy0leeE4XY8Psq/w6huzsdWXPl9tCx7spibNlVFXyvE2xIfyQVk6U6/G0uLihC1fVY40XQp hXFgkvaOgj4Sv592B3uyTMef2qVnnF3QCplE5KgENUiK/2Zl58kYSykq75VxLa7COE83V2nBpSFi3sETHEhzvTSsJfcgNMQ SrnIOXZBzQpi0kyvEYYt4HqlXyicL5XqD6lrO7ayGuCyfGB9Kc onpeoVxRRj9BAE1eLcrWf7V 8jKKDjbhz3hIs6eDr 2ajFJtXr4xMiTAaPl 1Vv8SIMXw5KNW A5uxXPS9f01Sv RhEU/bPdo2I4WzhkWaNgZlyM17AKPpjlL8cx3U2H8Rzl2/mYD3bPn8PKOcrj1M5HzE8V7ZRUKX/Tfz 01vIpv zmzb5HlGRY0HtmOl3/Bx1bCNzELuY pFrDU2pH9w0WwNFZi yvP4blXtqOyxYoslRdGwdeH/qNIeCFGFtIhvtpje Crnd30goRuzGT/PhPFAphd2yrWQTcoPtw1YXy4t77htxwkj4oMWSTRZJ1EUdslC4 KVULZfucRQvQErZRzlkbd73Eb25Fjovy7XDW8dqt7fhn2nfDBa HHIkE5n/8SASLLIv8nSkJBvCCsaAr/cFKbCHK1NrgHVGmlRGGglZ1fqyRLvP GtCGT6TfcsrQ3PtPtTD JpX VAPXI/ZtK9uutaKFDofK8VZk82IP7UH X RrTu6vhXbt JIE12buSErfA2lczHVovL1SriH21QujWVGZiBzlh6f/PEFbNpehsrP2CeBF3XHy7DjlRew7WQ8nIuzghxnBWPBogeSUP/ yyjYU4U6Lx9bgvytFfDRfUiVr6MlYw6SvijDy2 WoKrOS02uQkn NlSEa7Og39NvFAkL2GiySEK/k iJr/YoEhJtob4neDiKBHRUJL8NsibYh7vkrCoMUROprNChCLKe2MGV RDkpkil0Hl3MI/SojcoQ25uUdt072Vro4jVo9MgOmyL0P66Ge86r8jJhH05HxOlh fWAZnnma9gOHmJC6bBVWPGyHkbKwk6Q5y55B7kLVvEicCUtzly HNZpD8vltSsrHix2pB6fcZP0G5xj3FbINj6hy/b/lJJhj1gH3xCjwr 1DndnfwNS/5UHdi0dN0/nw9KI9pajpy2RpQFNqkZMyc7oBtNJ1XdCz1AkJdfHngo/tqGGGX9/3Y5k6G7kwlShpKUHpCg4lz1IoccMyZiPiaUhQcCje 5EXVW0WoarXAwR2VcIy2wTjIjeo9IcefLUbVeQMs0/khM8N2Rzzc1SUhw5ouFJ9wwzDa2ckCl4L Sv9RJGfoP7VPdQX6oUaxd0R5t0vIitBQ/qbxJIB5GIrDXXQsWQkxwb/XjlDPv5nyx/AS9rzP8ynqISsi5m0qK4Pis SyF1JdP/VbC9IxZymMoO1jpFDup3y89Du1pYWOC9CDNrJlxMvOS8qqV PW1LPmXnUgZCCblMTsW6qw5w/yuPonFSj63XNYvzEf23YVYdtr65F/2AfLtE4k1rhMZM6Mx5HX1mLjG9tQtL0Am57fQj1aK9Ie9Z I5ZFMOOOOYPO6jcgnAbjjzU1Y/7t9qK5vlNIlhiSiseQFbHilADveysfGdQWoAlkL8ztXYD1myGB 4dr A9S/5nVxVvLcN Ws3YNObO6R2b/yPYriH2OCkjkKAgXrEn9zivx7SuT2H0vOJZB3JKu5gAdauXI9t dK8rT7rpOSXLR UvRDctE5YEL3xqt7vaVDhGe3Bkt3 t4eq9VfCMSm5XTiS h u1uHi q7WIq G6ACSO6MQmGaqDLsTboh8v3A1exOt4towssEFhvF4SXrcH3nh6 XuR9wdeD/jO0Fc69bk8hZcBubiVHVSTwObATq7ZtFB86z6JG6fnvo6BM7JP gDnJsRbS RoGHs7hsdk7F9ZDsaJXnittI4YEsCx97YCyU5zioTDxPCuWXUp YetTGa4mLfonRSJKxsWq/HNZKIR6yPTjDBgmSn0g PzP 4gtlmgs5FyoeVZwDq0ZadJkOEFIHkR10H16FgX 84W4bi/aqY mqUBfW q1F1zovBQ7p7m6sHhNZx1kVt0sJglv2hj3CjtkEHvdpLVKgPdX ogSly10NL16cCBrdh ELB d1XAf0judB/K9nzCxmYA0zyyFs5VoURxg3u BEfOJcJ2v3KuOsRG8Iv2sqnTGRHND2nIipI3BQKi/zwOPJEcTlCycCZhHcnSIJIXRBLaGp4oZ2dYFHhOQ8OT F04teLJdfbhzgKbhbwU9lOC7MO9lX24s5WxgwQ75YlhJcCK5zE qmwRI1FOUh9oZxW9dUT5WIlFsSTBkZcWQMgApIbaqetRGKoOH0 6IpbwwpnFYu55rwwK3yfFe0i3rkr2zE2t8cg25mGlI4S4T xxV0cfHwNfH4fQgn6uGJ05JIZD/qPjRfluM7w tBbz22d0tIHTwkt2J1LhbPa/eHnhQ8MdPBh3rXeFG1i6ytVSsDLzSs3bgNR8gS0tbXyd4DHUid pIenUYvUBYplmAqdpx7xZM04JWOmBu56HynRTqwNCRNGDiGr5U K1vB9CnQeNmlhpeDIU/SANGqV7Vkft0CB2kD8 CH08NFe99MQIvk70G0USTcKchXYo7L d3dVGokjaPqZ8U QdFVGspEjAdzY8Fk0WBHtE7BJSKm3TqaxQycr7pEAk175T5RsS OirDrwnL1sa1tjFqJKV1ZVVdC2SBNGr0MPKQTg/9j1dfuAjtEFOHsXSt0wg9Cc9qyY 6FoNNN9toO1lL9kRSrOuxUTnPV/JRHe413V5hQtpYA o rZD2tHNsMDXW0HWTdttpOA1Xoxl2eYK77BBZdKNnI72T72ZM89 MxOcGFqr1qK07FsRrUtRphmSbvK2hTYRneCHclq9Qq1Jz3wTg2 dLyXlJzFiMbPKm 8chfcVPQfi4R6 fxdh68bX 3KMFI4eJiohXr8bWrpR7 3Fu79P0rCWI4KpTsf7tLkOVsgpNSCfLQzZKW0fEpp/Jtk6 NHtB9iWbRS/a1UDtffbRt5wp/ON2hOhKydFrJiAv7irws62BZZkOitQw1dZ4ke B/37j2AarJiFi yBXq/WnMqlkw3ovbYPhJE7Ee9Gtopi1V 1LUwz8pB7ndToJdjvho0iB/YfmY8n2Ht6Vthqre2GF2Cygaga5fy3SzY46qwbye/zGDBonuMcB/ZqrIK28PWQy7oJ6X5hxCPFKL4pBaO7 UiQ/0WHL91tnA5XV8dTu/cgtJO9Ai/8VFy6CJMs1VPleft8J4/lKlLB1TZTvqcBFUwpyZpnlOujeLMiBc3gtKvd2Yu0I i3964NEUhQt36NAyoJfsW1j/ u0HaNMgpLQblpEYoDOWNGgPpLO0co Cee2X9Kfn9M2Hcu0XaI0nhAPeRMr6LhwkEBvossVVyDvM2R1 Pg1XfobxeVT2W1kjWj4jTPlOxFqQytZOC08DMXWCg/XkRLR8LckvN9dG/l4UiotL1D8bXQMCQxWKjxfoiElxPTsg8Q0LF/nRGKTWnNRWdQW74XT2L zEKXSF24mpD6eRYIk3p8BHriOemAc34id6wqk4ZkOHySOdCL7o dmwDNFIbyghmnq87xdiy7vtHzmaZmZjUYoFhmgffNEaaBpdKC3 cghKus5MPEm2PrcJC7MTaN7lWG7JXLgT vBYFnXy8F0RomWHq0CZnYtl8K/TyzfddOILT0XboT8nnNjkbq/4XAucdQF3WVMrzoBGn3 IJdxsy8zJh09E5tvqvredcBYp 6/ 4TzsjB8 kNHcsL4AFWT/Ogu5/nsNm6W0rVriLsHA6XbdB1D66thoq1HuhWnW/2gm XowWVlIK6dOMiKeD VjP2VIUFpTIHzP64Y8ocxY6YIyX781l1b0RfK3oX4pEEBE9UyT 9B/O8bKSZw43 k CuKUbBO/1xQIaUwoPLkDmFjJU/5GPHhx4gwYGsBXqUbC2G/PK2QNArhCL5GvJ1VSRfZ0wzs7BohoXnwslEqcfp0u0oUL/9JhD0AqFIvoYIRSIQCK4n/WeyXSAQCARfCUKRCAQCgaBXCEUiEAgEgl7RI0XC3zGI0PeDQCA QXE ERSIQCASCXiEUiUAgEAh6hVAkAoFAIOgVQpEIbi4Uj4QypmlpS JkQWDEqMkY6kDbLKq8BJRAIbjQ9 iBx5834QaIX0tLqPrlpvICiht3X8rpUKtpeBZp5fSpmEhC7W55 45rWpftx PMbQ8a RhuUl3YnWp1VpaqieOMWFL5dB5fuoXonZVMZLVIbimyQM7L 9ZSa14zE5QqGM2vmv1F5e/p6I4mXiqd3RyrLyjFxfyyv dbaYKDqH2B/5tyV4XS9qe8D9Lp/Xb6mcUcDCHn2QqIV1biZS70mCfoA/prHBhar9O1FyqC6wJtZ1I2htKzMy83Jg/WcJVr9W6k PAPO385AzyYOS1ZsR VE9w/pIHtJQjA2/lx17qZm7FGtG1VCbS QIP7q705CRYkOS9Hk54fPA/VEZSnaXt69hxcdOD/FZQvlqXVU48M4 VNSpr7gVmU9nwqpe9YXy1rtPo/wvxSgPWvOqff0t6T5erUf1 9uxTfq6Pbgcz4nCoPPS3Z2OrLmTYRxEPypuc2UxtuyqCr73vNB kRhrs5kTopN9eI pPlmPLW6WB5fS5nMz7rTAl M/fd9mNI 9sRpGy6Kegz9K3FQkJ1JbpJCzZR/oP/YqhlYRuM/1 4z6g/RBlIkECtinD7xeE87MnwhYH5f8Z7XB 9nQoO6mKCefy9gtKHx c3ppNTaFjY2V/7G1vUR0kxGP/Hl6ZtL1AZVD9QQs6MiQ7m56iZuyn49jbI51f25tyWXUUx 3jcyYF1EJtkOrj8ukX3fYpbcvKT1owkr01bqPAqxDL58ULRPI1 6YkiMT2Yh6Xj6lG6cyf2HyfFwf7Rk51wjqrHlq2lN1iR3Lx0XO hQRYdz0ML yJNIn6CB 9AelHxwDDV1sTDebcM052zYNRXY8FKxX CGHkvX2zziTlimO2Efq0PtX7Zg8x5laZPQBSl1MLKjrbudmD0l HtVbN6BQXq3XROXmJAMV7 xA6UEPdFPnIHPBZDQfyMem3e1LpYSelzY5G7kLEuF v9jvdMw8EwsXpsDw2Q5sfLPCf/ 1dmQ9lYGkS Uo/lMpKthPfIIF9jsbUfGhv2yp/qnxOC2Vw77gtTAkT0RiVYW0MKWgb9Onh7bYyvBNJYH6DAlIXgm XQjQpktjhFB JzjtDAvkc5WdLhYUtQ8qBBbSPrJxwtD5B/5HFElAypFCaP6Zj2F0uC3VSJFHfJSVBis2nWCxqKig/ez k/KGw46koXu5dcRlMbeKyNCPoXNmVMNH2BpV7F5Wv1MdwnYoSIUX jY7e7rOhIIarPK6xi7RIzHKP1cH YjxJWIhzlrUPV zuwOUiJkACbmuJ3tjTPCasheFDJMjMdTqpfa7AjZYET7QNXJEw mOJEmH2dJkKNVKMf6McA NxX2oVTjHVwWO3dKgT2kvtDhsaB6OP8dIQs3KvlZSc5Ik84jbY Yl2LkTD5fNc7T7Ze8B2hmLkTahEeW/WY/NOytIifCVo579h2XY8coLWPuarETCwcv0n6pA8Zsb8cIfP4F VhayJstpHaAyT1WibPsmFB7XwJoiuRyjBqQibZoO1W9vQtFBN WifAd34NfvujA4ORWhXkXasWDRA0mof/9lFOxh4e9F3fES5G tgG sE6ny0vmWb6XA4iXr45UivxJhGqoDSgTaFKp/ME7vUsrhSCrrkFAi/YU rUhad5CwzJJ3VET/wC Uu4WEbkDQqmG5RGW3 vcCsCUhWR7pcgTBbYj HglpeV8hiuLwOh3j3/XD1gwdyx4Pwwn1qEmU/6C8o8A VMjaUJaM5/OKYWXWGeWkHKdQmwLCtzeQ0KEf mBSACGiup0707B8VR6yZyRJgldnciLzqVxkJ7cfYbY54Lh/OZ5ZNgeTTUbZl4gJaU88i9wMO4x0oMZgQ8ZTK5BliJVSFfhYm1 negRETpjrgzMhD7mNOJOk00JscSH/qWSyfp3KAZbbBETiIessrnsWy TYY4qge/WSkLcvD8vkqlcD5SREuzV2GNJsBGl0iLCnZWPHjrICbYD21wzk zGVZ5P3IMSJ1qRuPhIhQHuRVW8ILkc0R4DxVgx3ES3A5ZQXRBd YMHmtuM/vZON8PoqUG5bJ0oeN vwCetJlKeckQoo20wDnKjWlqaXsXZYlSdN5CVxNfc7xLZfTTEJ bKa6RaqP9QlsqA/0bctko9I Cq9dzXjKZ49Esq7nUK9 OhLpBxIGQSgZ72FLB1piIq9FiqQgG76McWTdSC5zlVgSyFcG3g Y6XNVG3hIKpX sjUjWwkcHKKupfKe0I1TOT0h73hyayPqLI oiR65DO XY6jpRaEx0vBbJAWhX/8CysqI1R7NTrfjmdrkdEFloHvNi3twKeURlYtSIXOY9Sb96scp bEfFKBot89h/Ub87FtVxG2vbYe Yd9sExjc6gdvd6D4hfYq2AhX0pYHsmEQ1OBzes2Iv tIux4cxPW/64Seiq/a7TQx1Vjy3o bgcKXlmP5/7iRmKy7NipAxUo25qPtRs2oWA710M9 3cp/91kOck5JIYkorHkBWx4hYT1W/nYuK4AVZTDOd9/tvW7NmLlyk08 hhAo7f6rbDQMFxty1iQmOBF7ZlOxWyPqHbVUVtNnZxrOxZ2lPX PejoHUmW0rQnrkrgSdQ0aaMNYghJDddCFdRnshbvBi3gdz UYoRvkQ M/rUh9LBcrZJ/zK57KCjjGUur3TcvA0jzZL/3KPCxd2O7UTNC36dtvbVFvvbfwfETUz4Cr1E2WhC67sX2RBDe7 rlUzGYg7R/lJyLeSVdH8K3 0MtndHa3scCsz2JrheY0gqC0tH9BNISuLvR2yAYyt/Klg1bTwx7O/wuxVH74khpxJHCjCWZ3TyG4qgt0iT9Ydonpce 36U8 yjueTq3X0ol9Ajv8R3YuGY9CvZXo1E7GSmLc7Fq9QrkzFF69HV wnSXtm2CEmcfnKWgu1MOrNwQJu/pTZagIdEj9vVjXoZBeLPV0y05112v1dej9eve4UDtQRyItPK6z lJvnGuT2Gc/Vol6nDx6mqg/tMVej6pwXg4eoh8iuBQ00Xf3K2AnWyuxuFUMAb7NkSHcKe0Kct xQZE gMDvCNJytRfkmix8RFMhaqg5byGR9Ix9iGfdjEPud/8TL2fJqI2UtykDYUSORJ gQbMmfoUL39Bckn/Ya3K GbkInliyM c8FNTJ9WJFETSXCGUyZsCUTq6pt67xoSvAOo2yUJXerx8/wHWx2BeQeGOlds/fBbVBr fZKgZmtC8pUeTpmwQJe77uzRsJkUBCsn9iuvBEball/u8ZGyiaZtfnEgmif8H6ZjCmifjlNcCPM5S2 FKfPl9BvleRRWUC10rNRmskZiSIkE3vSidmt4qI soYjfrAjCg r3i7HtjY3YsHYl1r/jhmFWJjK5Lq0dmU vwqofZCJtbpo/TDF0GDFs9Kj7wyR8BvjQfFneVVFdL4 xdwr1fjudUAgHe25cgTW5i9vbN9c/DBdE2B571/jqq8K6vi06pz4HF o9GsTfHmTHXTOGkYnQNrBPewUtLA vw7p1/rDmJ09izthGHHprIwpkxVjT0EgPtraDf3xW6DqtDz5KDkudB42 a2LBWg56UQ2MTn6cbnit0fhfKsGlnJT0phLcOFdt/jfI6IyxTtajiezrQh9NbCwLeGT0nS5D/TjViR9lgl2IEfZk rUjYB3nrTnlHRes2SssgoSrv9xgW7nR8pxeHh5nkzitbDYpSUN PGZZCAl8rg13x/3n17eEI9OsxEatRdVNZReZtHjML9suW3tzBVrjNUbt1Cx14HC4 7xHNiBqgt6GFiRpEyDzXcEL2zYiE2vbPKH/e6ue80kfOovazHYFCratJg54jp7Y5/oRLLBjaL1qvb9ttov8L4UarDveC2M0zJh760uGZmGzClkyVXtU x4/wovqt1di5Up/4N7pcKUHK8PQcOu1CnvxOOUL/y4xww69yooU5OWI7VoK6VlME0eV9BmwrL8Ea4K1n1VsJ1gZSRT 1WfhBeNkpteelhP1qGenghfg5ykcInykKK6PipW8FXSty2Spym 8Tj3DMjmC2UG9f56QJiEuQb3z1q7eUw99/vk7DrIM FsUpmU BbWvb5KQPOkeUDRkGWjIkmmWLQYJqq Z2qahwERRl4uti9DASNs8d0LEUJm f/NvB/gHxZESisn070bzPM1LVL96WIy2eV4nml/1JSUX86OO5bAf91aqq2fK1Yasp5YjY7o56Meum5YB65A6uJRvV DQaJMqb/D1B vSkboRDHUoO1kCXvBgZdytaUQvz3CVIDhV21wNNPLSBBungeMQ apnfeDb14a6tudxHK65OQ8dRSpAXOl BhqNGJYd/3CEYHy4wMLP OE7qTRdiyL/Sh7YbzJSg7qYX90QzYlPmQBAeyH7SSkC9HSafFUdqhizDNzgnM d0j39/tOGM9XokSeKywtrULjKCcyVB OaidkwX6HB64TdcCpnag4q4d1sVN1/chSnGOB7vxpfpFR0Mfp x8kkhD18bAO9eaj6AfRNo56/yUkVOVhHf7GpJl64wOU121DviPhV4j5Ow2ewGah3TaR0vhNrBF Sbkkp EgpsTLhoS3pew06Xvq4T3n9lnr6LaR8fMWURr lNqpPQ9sxPAzVBc3UgBi6 gFtTu1vfYri6TJLrzMTPAcTQ3VpqM4ArKhov00WAHwDNXRMjPI eJyk76SNLHs5iKcVDb6REYl hcmm/J9 RKB jmRI01OukiGgNNI11qNyXj8ID3K/noaMsOIfLH9lRX9911APj EbsXFdA/VUg7cl1MNesxKbd/hwKppnZWJRigSGaeqt0EXioqPiUARmj2r jCD429LsJhTQsX2dGjTIZHvQtBn/DsQxp4/SywPahtvI0YqfqUR02fzvqbyr0C3KRN70ZZfIxPfuOhNHBtjAL qTYT9HHcg6dbQw3y1FWjfNf2wJCPdOz0RP 1lqDrHUePRr0Lx94vQfEHNaq T2fXIxwmOB9bhNljDdBIloLP/yrvW VB1lnH89LCuiAH6dOMiJeO08BzthSFBSXtH1ESumlZyJlrgV55 mFtD3PmSAkrNzmx/Tihf4/kKFP22SLwC3A/o 4pE0GN69mW7QCAQdE2gMywQCAQCwbUgFIlAIBAIeoVQJAKBQCD oFUKRCAQCgaBXCEUiEAgEgl4hFIlAIBAIeoVQJAKBQCDoFUKRC AQCgaBXCEUiEFwLWitSrnHJlF4x1I7UufaeL/HSnxDX4Kajf37Z7kVEftwl/gG0PE3Bv K2f62qX8nLjZQATeygSobX1Aqreb guni13iIKytIqCp35TqfN5pn 5U3Cwcvbs0vdcOkxlNZhmXvmBJX5mD89mpdqeZX22fsjo/JT37Mv21OxdLWzwxLt7LedlykPXrKjn6A1wzE/Fc7xRtn/OJ1v/WlUlu5A8YfygiKzlmLNXB2q3tiAQrXfmhsNLzv/v i3KC8/85Uw0oGMNCcmDtf5l51hn/I1ldizuwTVoQsz3ghuhmtwjXTrt74L3/fGR/KQOS7Miq2eKhS WCj5njHNzMKiGbJffvnYnTtKg5azuRH0P0XiIwEcqR93urjNwy luG XlVXUprY2EcPNcEsa8nLxqGfkO62IpKPX9Gwlqla8Ria58p58J XvMrwFvAVbrMA7bL yo69fXOkDIL9SUfIGR9sZ4pkpB1rBh2SZucSr1CCxpLn8Pmni4 ieDMzkhTnd1KQ2FCF8tJSlH/oRrPBjInJs5Ey3YjanWtRcEjO 1XwVQtRrRM5z6RCV1WEwv ugJsUB7s9ds61QftBPnaonb5dB8Ku03YzKpII2tSt3/oIfN8HQfmzc9Oh 9Dvd187eymeTYnHkT/QfeAODx2b u0MOOMrkf9yceceLK8DMVar9d/l7W6pfvi4vHXz0raJBGocCVtetp3 gkLUAyRgd5HAJy0QQz3zACTYY1ZQGlkJkpCndF6yPYqtlFpKIw Wh0LqGkulKBQl9ou3/IV1ip2qU1YYVSMH47qNjSDHFTKV9RQPdTmXw9kWq4/eU9kRwmS1ZtL OsoeOmbC18f SMiDlJB0fAivONmqfJpzb1JC6LG/3xGHsGNz7gB71ew yPvLju4K6s0fROHIm7h3eitIK2aE82Hf7fUi5ZxIs1KOKbahF3 ZXA6oN BTRtFhy28bDccSsu1bvhuSqnEVqDFY5vOGAbl4REnIfrwl1wLh iP JMuXOAM7Ft9fDxOuqS9AOzXffzAk3ApXiKJ9rKMuPXyBbg9TXJ KV5iQ8f1vY4R7B158/f/i5HkP CjflXq4Tx3GX8v/huqzPr61/uGVGUZ4TrtxhfcDbWuCZcYDuI/OMckQi4a6OrRfAvY5PwPGSzVwq32xBJVloXO D7axFljUYdStqOf0YTbMGku/xf2VdIUUTHDMuw jtRdwptav1HVjnXhgug3jx9L5138Ot/o EO3XxwJjwiVccPvPtVtmpuHBEbUofq0Yp R71 Rx49SRwzihuv5Ml23o9l76r8NdxhHQxwyC/g66BkOj/PkD16CGflvy80bPU/3ndH2kKujYefSjPvUp1AaSgTo/M4we1JyT7pgMX7tJGHTK/4x1/dyw738HZk2Tz0lO53IfGHcnRhjiEa0zYNTYO3FrA93jwQ6k3Tc CTdwObQr 5V/GobZoIwrePye304cr59yoky L5aEszNZW4o2Xi/CRUu9VquN8ODNPC/viLNjQ5e/cNH0jOZOn8RBn30In63Xz4/OrbmMJCUNgNJ3vdw DN/9I0gjEjq2/TajztDvfuwLnxDIaHOlk7sM/K mu58p5NVEhdqjZA14buF2u U9xXY2iCLKeZNyq 2qGQkX/KkoDpYRDcULXTxGjR66vy73fluH0rpP3kS6ewTndNHOZH91FKk DvEnc2/t2acWwc5uauNI4C7Kw4rF02AnQRRw2R7ki72dYL/u/rKeWZYOm4Fq0iXB R0uqwu/8wrTUjFxUA3K3q4IP1zn9bbHD58Ax9QJ7UN 3LYp05D14zxkJPM5slJdhNyfLEfaSDmP7HN AlnBQYSWFYQGieMcsI/uZEaAl3V/YglSR/lQc4w9fpmQumwVVjws 8LXWzFn2TPIe6T9/O2LV DZZWn 6xOnx S5y5H3ZFpk8z31jfDFDYYpcE7h6L4Nkd7LzhkMx9P0fPHzRudg mpruv9aSG4KLJPDJYg7yo2LG7NkpSJnlDJ5boXueOk7Pfa1unh sD0p54Fk8u8Pv l9Ify8XSuZ37zwny89 t3/oIfN rMM3PQfpwN/aon1WS5s2toeV70ewjBTi6J53HnhNGLPVtIvHjHmpVBEE9fx8p B80r8n5nUD4ettJwfbzP8ynF9Lt8UUoN9p3 FCmxj2mflET0z iYTkaWWn9F6ZQ3tH3soreVFEU0KZ62UZSuloiszApJicjOiXhe hHsnsT/0718fSCguSEe7ntJAb7bgTk0Vigt4ZJaQfLfv87vdlSiCiZTBU vbdfoguTLIZxvoKrH2lqKOQHpeJzOlkkr/xAnYEBnNNSHsyB07UqrwBRgCXRRZgxW/Xo5jvASMPASyZfazLYTjDcD209VUo6zxL1wxNgv79fKzfrYgCL cwLl2HJI5mo2VAY4XmQsNml8n/IwxWaahT9thiyym5Ha0XGskxYPCXYkl8mCSD2he MO4LN61QCaSQp8e nYfG0CuQfoGvz3jbUbnW1p2udWPoTJ5wTi7FNGavvjCOl2DclC 2mPr4Ll3CeorqzEoWOV0hCXQiRt6B7/ddCNckB7rghFIS4IMFCP Eq61rvar3XqsmfhmGtD8ZuVKDvlwbKJ1CM7IDsrYide0XTO0RZ SHMA2eQjOOdGI2mNbUUfPTV6Xz40d5jvqUbF2E4o6PB8lKGoZj smkAKt2FbUPbbGf/13 Tb/fepffb/3MiTCy 2GfhxRHCbZJniXVvu9T6edC50fHNdaHuBlgRtMzThas71w1hid boHvf76itwlUH593ZcLxfgHLpftDzt2AajNFe6PTcTZB/qzeAfmeRcO/9mvlU7vmTZRAt wMJi2IhcD7FJwnd5zaVad9j3 mscCh/OCXDcyxxZE1FkSJpZm JimtfRZmREgtYKuy3PZzr3 tKPGLZI16CBclOpR/bje/2C9SbH2LB4nn0gzQE2wZmmwm6zypUSoRxobjsdEel0w1cVvynV age4G DFEZcxIFT9TCau3bq2p1vcx6vXz5f3glHQzX2BJQI40XNzgq4B plgU823RQwJ35xv6FD1xwKVv3sZdkz1VBYmeoqxSVYiSq82vC9 8Us0sWKV9ViLUSzUr18eN2gYdJFnTLS6UvbEea18qRgU948apa Viatw6rnsqQPUBG2Ibe4nPjSECJMF6UuGqhpeePqXu3CrVGEsr yo aYngTvCRLI9DtMmir7idemwmqsRQ31HLp/buhZ9upheZQnwg2ylRI53fut7973fYBP92H7G/korvIgcXoW8p5Ik6ysup3bUfzZYKTS/Vizeg2FZ5FpPIkdlWqPMzeGfqdIrtmPO89BsJvacJPVIbSkUll pfsEe8MG nxLI4pG2qaye k5vZadT7GArnI3I8yp0XpI1k0H1cxmkLHzTKf4HtE2KJNAOfju MAm zE67rA/WcgvySb0P Kxux9jfHoJuZhhTO0p3v9gP52PiHKjTzkNcTz2Ld2lXI 26qNJyii4uH73IYR wn6oOcLkUCl6UxTFb5Z/eHOYnNJCzlwehOqKn1wEc9XYu832Ou1IexOjxo9sVD21XHJBzc G17sAA4WolDuPQfQJCL1qTQMrnOheUQynIFhpq594Wvi/W/8mOYsxYrVuaTU269Pkj8pYrx1FSjdXoDNG9dj9bp8HGmdjPRsf hIia0OvaWok0d4F3v2oqUuE2cki30EKw4PTB pQvbcKHpOdYugS3z8WiZ9WSh4iu39uypH/0nZU UxwZj6JZ9eS8szLQWqXQ3ztdO 3vnvf9wEovuZUDSr27UD y2VwD7VittRRISX/Jv0uV/ldLktul18rIWtEB099kFq/7vQ7RXJNftxZifB8RgRKhGF3txqqp0t64judXeWScgi4B 6CKHpwFUUZTQop6OWBLxuyQBo1ehjZE2QEvts9Hxaj4LWNWE8P MoNO E2pCB9HuBu8EA7xNThuwCt04gOI9DRmpBLaoF oLxJVF 4SBZjFSk6uQ3q8F/lcq5O2FeO07EWpC2IqGveEToHSW6pGWrCYO1F1KmVQYz8V0Z7O wkxeduPCWnfT4fxsyLkB1k4MnE6NB4ixfzGZuw4EQ/n4mzZGqhGXUPnvvDr61jNWeG0J1LHYD02Bq5Nfu9e2/XWoOigC77BRio9kjbIdHMvewdZKIfdSJxInZU5NhgvVKGE3044 z68oUztnGJA6djDcx/3PRETPTUMlit/cjI3rSUivWo d5wxISe9OEMh067c At/34fDWo7Gpi46K1gkytlB36sYNazH9zyLhXn1P/LizEqGefTT14iNRIgx/lxLqf13yl36XvM3l8PcoEfpOb2MLhfIGDafx3Aedi JOV4KsKt/zlI fXcrboQ0cSCGClSJtR4V 03Jd0cG2yIJE7h0p17IL3 3aGelIT1YNCVyl3r sZererUCNzo7Fi2xUqh tORVL7gmZfj7kQp3BisxpgVwwL5gDi KHnPDuPYDTtzmxTFUWD8GlP5YpC9uuqEQh9RC103KQ 6gDiptyRjeWBJKqnrBEG H8Tmr7cQk2ZDxqh 5MJfxTM5U46QaSpqer8jiQeY8pSJGYHsykHnM5tr3ZyaT/ldMokxVM9e8LUXYpCenf58lyL/Z9QO2f0tEXvmNoLapKa Q46vkObD853bRMWCP0lW YvxS5301r9/3O8L2eStLqfA2qIm1DBPeS8TT6MHiIMhSlbX9 IuFAFdyD6N5PIMV5tES ltS E7UwTlsCaxxdR3m ptvnhgRy kI72kdlm G5quomnfOgcaAORimd2sl/1X7 I/Bb37XveyDtiTwsnadqH21ZFk5DUrQbJyVXy1roEtqPlZ6/x m5vVCBnRHNS107/fODxB74cfeRRG hay/5bA9B/QFip9 RKJDgl77/UH/jQc9ZV77TJSiPj56MqI pfLXg52NJ6fheoPbfJp8HBZ4vCfLfHoL0rQn9jXvGvy/R6 9InEhsUv1oCPY37r1wGvt3Fsqmete 2 vlD6UMg ic5KIaz5VhG5nekkgc6UT2Q7NhGSL7hr9ai4qdLpgWm4K YWE/75n3U8 Ve3d0Mxo/K0N1XAqM6m8N5LKS9NTIVtqP9qH REf/5J2hNadg0QIHLAa6MdwYOllNUz1clcrEKBH63QD7Wje7sO2MiR RmojRRKvlFP7kP299U5jAIrRXp31sEx3D5PFvrUXX4IiwkK/1l a 3kRJ93HYF5aOzcN8ryJPCg4 RlbKLrlmIL3w0ulFWuAUl8pCKNjkTy ZbA/7VfReO4HS0HfpTHf3qd0D6YG4hHOMM0LVS RTF51lfU47tb7X7ce uDUxk95Kux/fo ZN KC6UrMtHWWffbEj3INhXvuXRFcgeXYeitfn8IqWMAzmr0qE/mY8Nv1eUK9HVc0NpWRnO9meCuUrntHUzSqTJeX4dNxcZ4 Kl5PrKfGzxLQry88/Xrju/9V35vtdOSMXiudTBGaKlOqgSfi4vu1G Mx9Fx6mAIalY kQKTHzN6dCwz98NQvhs/xrSd3y2s1AN Riylzi vRwk58NSd3gTCuW333pMGCHWFzHPy0aaub3Pq8ZTU4yCd1SCVy CQEYrka8jXWZHcMPqJIhEIrgXFgBIIbkLIRG/ym k3PTwUFTL8JxB8XRAWydeQvmORCASCvoCwSAQCgUDQK4QiEQgE AkGvEIpEIBAIBL1CKBKBQCAQ9AqhSAQCgUDQK4QiEVwXTNPSkK Ja2qFThL9tgaDf0T9e/y0Dmv8V/qXb1T7Xw9BGp8DrXylLrav9ubfMp3BUjv9piE8P9ppIcS3K92a qenwj/SsqhBL9Wyo7Vd5R8wUdM5vSiygoy6L4qAz2JUJtUYj6MbXhR/KOQiTneorKeZzKU3yg/JzaoVpWpWev/7LPdjNq1mzmRYY7wYzMvBxY/1mC1a VynGdcA1uUq3hfFVLS4ZUwfp0JqxykudEITb8nuIi8G0tEAiuH 31fkZAwbnqaBOUOEpi8Cu0xErS8gGIBCeEQj4Ftz1HaYYp/kU6cBTgJ9JbvkdC9zb/ulkKH9ark1YGjqEwNl8kdb16WntfoUvyRqOE2/YzqCfURz5DCCOfjvTWb4m n8ileKpPXCyPh35pF7SDFIRHJuVJbm9hXiuInnhd65HIy28 n52ttXcevy69BkYT12x2C7bFVWIidWPtmmFLltagU39YCgeD60 reHtkgo 0hASg6mWLAy9JcXaGx7ioIcpRD1LAnTQvqrWAEksGNeoWPfIEE rR4Wj5Qn6jxdLZPmrjN6QNRBWiZBy4lV7g5xNqWgjRdFCbQ5Vc tGsDFjBKWVSGzW/pPxUr3QeEZ5ry3cpnZUIKRNpoUguh9tC1lTAIVZvCAxN6WCZkY bUZP8gFfvadqpXT04wwj47HekL0pE2w6paNVWBXdGmSOnps9Wr qhJaK1IWpMAqxRmgjfPC0 6gvIdoYX9kTudLsgsEgl7TtxUJ 0XnJeAVxaBgJ0F6C6Xx2szdQcK1jZWCvNsB6tG3kmUR08WKuwH Y2uChLFIIAc Jasii6NTHezjYc89wuW2RnCu39QjlYSWihhXmo5SH6u81kn/xacj8cR4yp5oxnFdDJYJ8bU/Owoq8HKSM4jQNDLY0LHsyS Uwqit/28SkZMycTuVJznqM0MU3w3dVSukxYX1bCwSC60rfViS8fDMJ1n BKIGoKKYhz8k4X8FLt HEXiuRTKocEWhQ7n8oGmkb6Q/OvKI0UhxppyXjKx3k7uLvlISfFLS7v018epuoUVkrUthhlniaS c1Xa6o8OImoSpVH6dWFgImKP52Ptxk1hV4O1TUpC7KlibHhjG4 p27UDBKxuwdsO2du B7G/75Bas35iPbdsLsOn551B6PhH2ubLfiYMFWLtyvew/nBTJQLJ HmLXoWuwKi8XSx8L8YfRGYpva7oXkm9rOVogEFxf rQi6a1v8taf nVBYA4iHHVUzz8oH/Xoo/6N8pJAj/uILtw 4CopBjXRnE7WC1/UZgMpglPEh8vAdBjeI5DR4CUzwxRnSuXKa8eUPp4C87GMnjoWk aMmbYYAwn8Lvxtx1MGXa8kY8tW7dIYeu7FajV2ZH5ZE5Hb4Shd OLbWiAQXF/6tCJRJszDwb3vqA5 WttpfYrkGeWJUzuiCscYKudzCr kiyUNtRC3kFJgX w8t6K2SkhJRI2ieLIiYp n8l/yR0fi4z0AWyLz6c90aptqCCyic2WLpRPl1EYKMOyczrXQjb/sup2/Rv4eNwYnpyIndx3WrVmB3EX2wPRSt/62g/DAfapG8lEthQ9JsbyyBRWNZtgkZ/Fd0Klva4FAcD3p20NbM kEikkQh/bWSbDyvEZ0J68At/KbWiSUu1UiDAmeaJKAUaQ8gtBQHEvGTgbe1YI/Ih/vDCsROidWPEEeDplIzpWVGLWpRXF9q8AWzuuUFqF76d7jRc0HJ Lxf2oC1a1Zi7ZZKNE ag0XKSwK9ptbvpK4nT293vq0FAsE107cVCQkFzc9JTmZTj1sR6 PS3JYP2KT6a31piIUq9/jYWPISkROhvREpEJoYsC/6GRCmDaXuV4shqYGulOZP21ZYACfsWrl8W3BH5eKeyWYmoX9MN IpJzJTTU1tbvUlDaw dP59zyKJ0HK7cvAcucdKSObZ R8F5olK55xKje2rI9movlQf7TtTDPWgyroQ6uQ3JUEIYIfFsLB ILrSd9WJEQUCV0NCfRmvX8S/CpJD/4mIzDvwR/nkXBupZ572y8p3xv0lye65UnzwOQ5KYbOiPoBEDub8ij5qS7p7 avtlEYWC1sbzWOobm7DcP9fVgixJLwjpfVxamc5te3F9jYpwUd 1Md2eK5NO9fLcD6dziKft24EBr8npNxwtNFojbI swLo1/gnyNbkzEX9iD7aHWkqdoXprq7KsHG59CpasXOcva 0q5HxDB9eufBSFfSW4DvtKK EbtxAr1irHrED2BKDiD1tVfrsFAsH1Qji2 hoiHFsJBILrSZ 3SAQCgUDw1SIUiUAgEAh6hVAkAoFAIOgVQpEIBAKBoFf0SJFwZ hH6fhAIBILriZArAoFAIOgVQpEIBAKBoFcIRSIQCASCXiEUieA rxgD73FTYFV8kAoGgz9GjL9t33exftp8Cmh8HWmRf5TE/B2I7c0ilzsuMobwFIetR8TpVr1K VxBYxp0XYIyT/ai3Pg00hV6ShwHti/7NtnI6lvK2fu7f52PZDzx7TuS1uq5S 8LCZaQB3u/J wQvX6/W ux7vvn59rKj0ikPtRPdlUttW9Bjn 1OhC7w3tjgQvWBfSj oKazdSsjxIbslQuBP69FwZe DpYVmU nArs3olC9AnMQFmTmZkF/fDU2vytHBdAiJecZzIytwK9/XcweB4KZuxRrpgdfOd/lWnxyrAw73qmER47rjE59z8v4fdSDzoEelnc3oPBY98e4P h4HmGP8XlQ66pC2c5iVDbIcT1lYibyHrJ27gdG8aGfYEP6I6mY PFwnOfXE1Xq4ju9D4c7ur5Hg5qD/KBISBFdlX UaXhCRF1OUfZUPCF0EUclbRHkn0z4pjLa3KI4UQywJbPY4yHE Ksc3no5XXOCSxJSWbJeXIvdNov92UBnyfhBllJ3XvTpI5XE6Hc tOtJro AG8YOQLVB/90Ya0rWURBZLzcap1upqiqAy6SzHyPvuZb6Zy4n5LyoUVH7efF GPUOPobQbk9UyRhfLZrDbAmpyJ1rgWNpc9h877eqJKvUpFw3Zm wNFZg84s7EM7DimH cjw5w4ja98P4jB ZgbzsJLoJGrjfXo9tocqIjl1nrsHKl/1XTmswwzjKgtmzHDD9cx ee620B0q4M9/5kV0/E7Ul524PijYWoCKk0nD 7nV32OH8X3PgvLUGBRsK252S9YLwvvdtyFqxCMZPirFlRznqqG 26sanIXJQC/d8LSFFej5oFN5p M7Tlk32Va9jNLHdrSMCyP3P2Vd4SuvQ6CdwB5yibnbY5Ly8TT8 fHTqG8 6UcaHuDyryL8pGwDvjx4HwqpcEr/rL/kXC0sJCnICkRho6NJkshhtrk62zxQraS9lGTupLzpKCaSTkNoB 9jwO0unQMrkU6JpNye4K1D1fvbsO UD0ZL8Fr9WoMVznnsqz0F9jtC qLjnEifaeFMkj/3IB/vhNZgR8qCTo6VaPfz3tEPfPsQmW6sE2mSX/lI8ME7aDLS54XJrXVi4ZR4eC7I yE45kyEpqYIRXR9k2Y4 RZ3ibeuBjUHi/2 UUhQLwzXAbkBaJOzkTUtFhVbZSUy0oG0eaTM/Mlh8XxWgeLXKuHWm2SXxwrX R5MtiEp5jRK3/IrEcZzsgT5H7qhJ8Ur6Bv0D0VC1kcL9cZiWImoIQXQE1/lbXUkkOUnv5UslJgnaN /G5Y2HlaSbPEw8LrpYdJYKbWygiOLIdRqaGXLh6wWZUn4cLQWUp 6nKHSS51rL7Tla6OI1aPS0D hwr/eZZemwGagiXRKc38nDisUqh1ZmGxxT52D5M8swZ5IJRr0cT8RP omNznEgi/aHRWzHn yuCj9XakfXjPOSwn3e6sAZbOpY9sxxpI V0GDFhqgPTHlqBvIftMA83dD6kEoQPnxyqhi55YQePi7aHZ8Po KkFVkxyhZmgakkd5ULW3GtU7DqHWZEdqpPM83lo0Nulh DIUycg05CxMgufAdhSxu2ZCb3PAOTMZVv9u54zUIh6N8JCilLg R9 BEHS5qEzEyUAajhd0wGL6mRnlfcLPTPxQJLxFPP8pwQj96EglS Su ONlI2PhIkkpVCtH5E5d1Of3moiB5yLy/Jnk37ip PM3QM/eGl5aW0hbTNS9SzAiFi0kiBkfAO A4h2nZQHO23HpYj1JDV5Hud6ifLqCvaqN6oYfSX6ro63l 3934qV/mxhxJhuV1DvVDJUlBCBrKfysXsW6qw5w9V/izjMpE5Faj43XpsenMHit7Kx8b/KIJ7ZDqWzFZJ6CGD4dn9Ata/tAmFH8hxJDhMBje2btyI/LeKsOPNTVj/ix1wj1KO1SLlO kwnSvCC znXfIDvx5bDpFV8EgmyMaR0SJRU4X8dRuxaUsxOnqT7wT3dpR9 boTzIdlnPDMyA6kmN/a93T7co8Zyvw2Dz5T7l7L3lqDyjA6TFZ/z3UGCMz7Og/oInsveYULGw07oThUhf3f7wF39ro1YGTJExsq7/f5SeHQpVnzHAsIjnfDboH3mIU/cWDid9fhdwnlmM5hdy8Z5Bm AQlxaVyJsHNTv9QJCScI57oCQNPijc9Lg FKXFs5ZDw9Y0CBlBPTvt3II4snqYxFM9DZSNo/xyl8TAThTie4CYrxpspt4UsoQG0zb5JJGFPoWk/5XueEzvSxhPnZElI8zNd0EZ18lxLMym0uKPULmrbgFXUTlIqvj DKJNJye0Y8Yn100RMsSHb6B0jMNhPiP61C9QAzzKPlMOIiDpyq h9Esa2emvhplh1TaVcIH1 EdqFFHeyskX v oTMHLMPrUXPwIoxK2RQ0J6vgijdhQsAS8MF9tCjsXEfXeFG2qw Ke0anIoPskOcf61kQ0Ht6JstCmMlonnNRxOf1Bu3eT8g q0TjagdQQqyYUnnvIWOaEsa4SZZH6Z7kmqFf/WBYmN5Vh25sVPZiL8aMho9J7NRaJdztgl87pBt0DsnIcdycCDW 584qpB1Uc1OP1ZLZrjjbBauhp8E9xM9A9FQkI9mgRrOGXSna/ytn0k7DPoh0MWSIwqX/RESiPFEafMK9APS5pHSSdFwo6meJ8sg0Cg/LG7KZp62S1kNTDRPMxE1jkLe0ng89tcJOyjp/jTA/DEPlk mifk/S6IIoXRNpzaRWUrw1tR3E5SZL63/fsBelBu13jg3lWEokDYhvxXNmLtb45BNzMN7DpdFxcPjWEy0ua mBYU5ic2obZDNNMbrCdNL9aExjBP3uqZGEmjxtEVla3Qw3R9cd tpcK7QXauENjJ ELycizlPPmIyPyelpMM1YCHvcMRTt7vAeloRhrh3mVg98o1U9 NHN8DSaYJsXIvyGOvzOteSw4ol03Pkpz5MUX4PCixzT/Bykj6pDyW8iq8dXX6W6v2wVbsbG51/AvktWpHyL5ypuzD0wzHXChmPY8mI duwqRuk ug9vbcb6t13Qy8 W4OanfyiSLnyVt7zuH2YKBw9nXc0iBRCiRJhonm8JM8CrvL0VF lYunK6Sm0GwYH Nyk6V92V4mIrfqNIok ddILnoDWddcL0h70r2pNxr4qwXjRo9jKREqy9cBL6oIgWzCZtC w39155dQi0Rzx96nY hgeKmnCrjhudIM994wZb9SgOLOhvV6iOuPRaga6EDOXCM 2Rv LS5 HTh1nA7uUy4Ej BTT/zvbsRPSqW u4rz5Vi9ZrUcnsOOE43QD1NNDt0ApMn16Tqc3r01vEUVMV5Sjj 7oh/DA1Y25B8YEHbwXzna81ifq4SHFlfglvZAg6B39Q5EQ7Kuch6LU vsr5NVn2Va4IUh7CUuZLJCVCPfVwSoThbz6iuEz1ODZts0veGB LmLU/RdvB7mP43veiHG3hTS/0jpu0WUlotpKBiSfCq8fHbXFRfJLBVpCErqlktm7 Qy5gv78v0pNyeo4NtkQWJ3jrUkAL37j2A07c5sWyRyld6ggXpj 2XKQyNd4YNufCaypilHsl/2HKSYG3GslOcoKlF62APLgxynFKaFYXoWsudfz GPauz84DTqa/ahsJNXabVzUkiVnMae36stNDn8fg qySpJnt/Zu0peVLxZjOpbHEi/ru1WoU3BEp5c/2AbCjoMIcpE8NYWozXz23Na1H1aQXs35h5UnqSOgtmJjAnqh0Q HxxIbjPUuVF6nToLgxtKvPkjkyewmEtZtt1P4nJTBj/xzEsoQEM8jtDwODMggJXIXKRVSIFGhvftJlL6b4nmbBGQTf4ui j1q6BJouMvJSoWUiY8UEg9t8ZtjbaQg4kpIeFP9rDjYj7uPFJr 0ASIpuJifkRLhISkuSIGUQuNP6Sf5QUi8itDvSEBlNfNkPis5P rdLdK6/pbrVH192UW7PvyNxIrEp2MySxtAvnMb nYUoVSY3RjqR/dBsJOkpsZX2o32oP1GC/LfK/cZSyHcVfuTvIN4rR x0Em7xdGy0BppGN8p35qPouHLxtbAuyEH61ETES2VToDxlhVtQ ItV/Ld jRHZM /cPJmQ8nQPjiZdpO/ywl3bOUjx7jwfbnt G6rDnS/D3J48n4fRrG7DjrBzXLZF9R2JdvAJZE3TwhdwvBf6IMf9yKvKm N6NMLou/I8kcq5Ge1QB8D1o9cB8uRkHgw8De3YPw35FwpyETC7 RBL3SraW/vvrT2PeHApRFfH0EXyX968t2QUT0TJH0XRzfXo7kRHknhLrD6r fGvjrM87KRZg4zhkp4akiIvxPxu2cCwVeGUCRfQ74uikQgEHw5 9Js5EoFAIBB8NQhFIhAIBIJeIRSJQCAQCHqFUCQCgUAg6BVCkQ gEAoGgVwhFIhAIBIJeIRSJQCAQCHqFUCSCmxAtrLPS4JBW4r1B KE62biRaK1IiWIpEIOjr9G1Fcgpovh/ ZdrH0/YOOT4c6rwc2IeHsu7Wq6r40PB0F3nmU7w/2c8/AN/jqvSptK sicVp2Z2kqWBf7E2UpuTj9cACdfiA1l9RnFIGnXMT7Ss UMLR9kvK/1N555pgn 1L6f8vEwec9zvhnHYDPeSxky3bDfbAN82J2TOdcFznhQfZx7p6 RWEpPJ3ZiaMqLeyL87AiJwWdLRWpnZ2DVSuXIi2MYy7d3elYmr cqUM qvKVID1oXSyDoy4qE/a7PBKJW0Q/h7xR4afefU9wL/uQglLzPy3k/BgY8RoplEikT9i3C4SmKl5d7V0IsCfRoCkzrB7T9SkgeZU0uhu sg4d5KEncAlS lFwEx7E7WSwJ/DAl19lHCadSGAdSWFvYJr1qUjheZvMpOqEghSsezDxT2hqikk5 JqouPjlPLZHzwvgy8ru1CkhSm3Uf6fyRHXhAaaOAry3rXAaywt D1lQsmtKsXn1Smz4r5tpeRBe62o5/d8D/rIZq1duQOF1XnjQZNCj9qCyorAcXiyE7GIsCGk5 ZG12LO1FOFXdzchbYoRjVcTYbs/xEJLzsbyDF4Acjte/gXVsXEzimviYX8kJ6zSEXx9ibFarf8ub3fLyYePy1tfPb50ErA k2GN5uXdWh7fSyWSSIJ9H2yRYo M4l8ztJA7zKM5I25yXpGLUFArvknAeQcfV0l OnsGZZejH30Q9 djfUT46hlf2jfoXOpwXZAxDCzu0IuUQ9xDlU6TuLbTNnTfaj1l BgZSJlEblRd1Ff9hKobo10ymujOp7jRTMfopXViPmfKr6fA9S3 vcpWjk3 hudTPHrqexQt8BfkKKka6E5QHkGynEyY9/u1smqijG49wE96vce5EsSngQj7PelIHmiBUmGWDTU1eGKZCVZ4 FxwH 4yjoA ZhD0d1hgGRoF3x33wnbrpzhTF2JKDbUjdYYRntPNmDB3BoyXau C LKd1Wocfy8x0jB94ErVRVji 4YBtXBIScR6uC4qfXP9wmXWQy1/vmHvxgL4ee/ mnJUWhgkOzJpmw/ixRtx6 QLcHvlYHgZz3IURI/WIGajHiLEWJEb7YLzXhoSzZxB6GobkVMwwelDTOkE HzeuyGns097fPguMCZdwwe1BwJNv4Pw9uG3qfUi5ZxIsd9yK s/p EAdBkxyTgaq3kPlOTmqM0Zm4AcLdDhc8Bu8d1GOC2Xat/GwuRY7iuoxfmYS8LfDcCl1natE2V/KcfSsfK2veuD qBaJ9lkYEbMXB6 zghT0XVis9j2us4/2SPyct5F1QLImPNQeH1ksGvXquxHQRsJeWjmY6M4XO8POtlpDV lVtO0r/DfdvB6AfvY/Hon5L1yPMEvnXE/bTvurpbDhH8cKDOphmZCI3N7vLpePdg0yYPX hyj2rH8v9c C4Q4M62ff3BPm8IqnDbHPAkbIUucvSJJ/xOoMFsx9bgRWPKu5vJyLZSXmmkLDsgB1ZK57Fsvk2GEg5a/STkbYsj6yormY33NCZZiPtWx3OAqkPOGDS0MM1fAIcUyfQ2fix L16BZ X2IU6PyXOXI /JtPY5FCm/E4uezkU2 0WnPKap6cj9CVlCAQvACF18M3xX5d3O0NqRvXgyGg8Uopis1/AYkDbVBM JElSf2I5DdSbY53a2BL6CDtoBPvZPJhAE6JuK5FMSoNfZR3sQY fyctx6juJny3MT91Nt/gcpQVjhX2kN/1fMgXc5fnKC8vOQ8WVZMJL7YeQn7Nl4CP4vK5mGuhbTNVhMpDP W1kPywkIUUJ4/D OZTkL02Xm9ch4qw5bn12PjGNrDnxM3P56OiyYJpkmu7apTtKoK buuOec7LPjv3V8O4px kBZK1Mk4qQccBp9qFa5b5Woes62tEPacSeFzZIPuO3vbERa7dW kf5wIk1SOBUoWLcS6zmuAxUo25qPtRs2oWA7ewfciBfedSPxbq d/3uFEGdXrhkflKbLshBcl5acRP9YZ7MhqmhNJrXTeZAmGUvHeNu Sv9bevaHsBNv5HMdxDbHCq/dOQxRN/cgvWs190yrPp edQej6RBLyiEEmRDNTB8pAyZ5GLpY RckqQkyVMSPt OoyfFSH/HV7u3orMp/OQGeIHB NSYdO7UL6T89D5HHZBN4nK8qeGxTSfzq lGhVkGQsECn1TkZAAj3jJ4jCE89GuJpyf81iVf/YBJLijP6JmTKF8rCjod8j RprIGor6N oM8vwFO8zi QuqpwOkcJrImuJ0pY5IfLG3vkaB8seQMtFQXTEPUztISLaoHFS 0kYJrpr/sijcA90g7U2i95bwLLrofujsUP94a1Dd4MdjQlTiqRPFRD0xTU gNGnmF MowXKrGTFGwHIqyj/lQZKhTlzpyoIiU2GAaep oG11kXXXSDXL4ZxnO1qNeRRSCnh VIMY54TLDNCZwF9fCNqD2yk1RoGKgOFw hmeXzGOFGbYMOenUlPjeO7FL7CyQB76qFNkGxa8qw4418bNm6R Qpb361Arc6OzCdz4JSa4ffV7kC5yle7Btr4eGiDrF0tnGT1gK5 ZQHUfKEP11SQ4AucTjGlmDrKmAuVbt9EdFAja6ZuK5Ab4aA9AA jecn/OAb3YOo hYdiR1F XlSX6e 2BHWr keOUNHRb4hRTH7m7VQpwn5XkSn9qhUQm4bn2xs5OtHX4lo2EFw oroMdonxcZDYi1UP3spYguFXQu30jEtcmCvka2Uxtu9UcDh0CZ nIm/VKix9qN2P92QeuumGundJyA 3IlUasrEgdeJguA XyIIvmEjraPRc6 S8CamPr8Ca3MWB8tPmJrV7euyUOpQcc8M4MZVUCCH18N2o3BPu LKiWOUuxYnUuFs9rP4 k0EqaGjuZFFcgq hUDWqU8CEplle2oKLRDBtZaIZ5OUgf64PrUw1sCxSf8lYM1mgw eDxvO/1DikNTYTdTac1j2/3OLxiL5n82wnS3arhNhtu 5H4tKn 7qYuhMsHXlb6pSG6Aj3aFHvk55zJYSZDyiKH2dPC2SLJOmmxX5 AorEbJi2BJRKxGmW1/sf6e2Tad8ofKT66D6W9lqIcUWuy1MnhvI7Gk2 A6/gA0vtfvwLjsXgfnjLUH5KR0mz3f4h4N8x1ASZjiIueY6ImWiE8 kGN4rWbwyUv m31bJXwK6RhukGTcbCaYBjehJ8R m85LRgrHDaE HetR4blTpeyUd1g5zcK2r93g3511x3EhUHqlHbzeWx3G F7ly1ZOmp8blr4B40EamqYUeeo8qZoUGFUCKCTuibioTo1kc77 XOvXJmj6M5Hu0I4P dtv6KO4qvtZTFtZZSXylcm/Lk9PrIGgvLQMT4W/qwgWInQdszhjkqE6dYXO1sgVF9QOsHuhX2fUhoP1FO5PNwVGvh Ns2hSrrwdbiivt2ji2t0Qas3pmBbw6e3H0 jD4CHyMJRWGxjOqnz3CDyjHFg w4TaD4uhHtAJpbs6uoff2kpHSmffQGjiuWkyOjgesfqtjAAeeJ sGwzDZv6cNZJaH6aYth3NULSrf6fIsED wvX7dtExYe/gare3RXCx/1IH202dXtYthNdTBdYj0yKES/1xUUKjCRdI0Fz/i7TJUa1ORQs/K6T2FIfk4FGLPSbJKpqZJ589KZEkyUC6UiKAL qwiiUoHBpDgbpYnthvjSaCSwBzwmpyBeuhNmaRYeOL9DG0vJKF 7ifJP8ucPBPVHhSTIfcPo5x4yKRn1GAlhUgBXqQ7pGP7LcxQUp 8xxRP2A6iZhH/hYUE/bJRS33S 8m8aTYqPeH79NFVQ/BXZ/zZZFLL B9SOKGy6nkYXR9iLFOyme6okjJdjG6VS2lM51kKLh426sFWKEQ/4gTR3ySNgWF5XCMzYnEPfsIup1fxbczS17txwXzZn PP97MQLvN5wvQdU5PYyDXJ0OBzGR1NE9Xby1dWw79pyIx yfKOeWi QGF099qShDycGLSJInuZ95tP0tDWmYbogR8WcqUdJps6qwvaQK 8SnPBs4jd6oHrvNycoRUlpXDrU/BkpXr/OWsXYWcb jg2pWPogjLMs2zwVhHbQ03H0VU/6kSboMNqd/MQtYMI7SaRDi p1wbOXT6AaTg64hwtfs1RLjaFQgE15M a5EIBAKB4OZAKBKBQCAQ9AqhSAQCgUDQK4QiEQgEAkGv6JEi4c wi9P0gEAgE1xMhVwQCgUDQK4QiEQgEAkGvEIpEIBAIBL1CKBKB QCAQ9AqhSAR9m5EOpM2yBtbv6hP0xTYLBF3QoyVSdt sS6TwGla87hYv0ki70Q9D8okezttg00jKK2 r0fCy8OxVkNfoepzyfOyPjxoDxBZQurIaMB3s 3F7XVL6a5SuLB8fBva1zk6x2E98EFRW66tU3yv0l/3GE9FUtvZH/m2GF4ds lcqg5eJH0Z1/YqC7EmpeT4FXp LiKbz1/6Q8lN5jT/3x3WArsvAF4H5PVoiRQvr3Eyk3pME/QB/TGODC1X7d6LkUF3YZd /TMzfzkPOJA9KVm9GqRx3s9Pe5jIk8ppV8lLynhOF2PB7ILNDXD hnXALBzUPfVyQkjJunk6DNJEFNgpQXSGwhQeotAeI/IAHbzWKGvCpw489IXHJeUiKNs0kpUFwsr/LKgv4tKutpKvusf4FGH3tHJEGupWMkRcWr tIx7F8kNsyqvq0v0PEk7ONJGQWtvMvtJuXSPJ7KIuEu WknqczeHaNlpSS1jeqO20Ftmkj77JOEl5unsgbInhUZdmbFAj3 meBtNb5FdF1YwT7aM0ViejAPS8fVo3TnTuw/TopDa4A12QnnqHps2Vr6lSuS/oLtsVVYiJ1Y 2a7y6hwcQLBzUiM1Wr9d3m7Wz5Li8dfPQtokEZxz1tEl5RNFfU Ih gMIuEp7RJIAn fOF5QsSzN mQ/bThRhI 7eTMsijbXZGx4N pCiiplB4l4QwWSSaWFIavyZhTII9WhkUpGM0d1AbyFKIe0SOU6 igeLKMtKQQAvll2vKpLKqfFQz7VpHg gbL26xo7qG2HKI2yYolKpGyzKE2f4/ic2nfHw38VcqO2Bkh2wqkINnhVdzv6Bhqx5i3I1231YxvLrgPr cc24D//ekUqF74rqDt7AoeOnvHvS hgnHofUu6ZBIs5EbENtai70p7KVo1hggOzptkwfqwRt16 ALenSU4jxjmRPj4eJ2ujYZ/5AJInWmDU1ePzc/46dWOdeGA6HRuubOVY1wWqxoqUeVYMcp1BHWdhpTdtFhy28bDc cSsu1bvhCfg6v0naLDPMNgsWVOO9D9uX8A0XJxDcjISIt75HCw n12Cx5R4XmByTzyJroFPpdN/NQFlkDXfknYdrqSACzcwaWBSzspVgVrAioHS3 PT kJK6S1aChNoSziloonr0wdihLoZzaR5ZWBwdbdjpftoxISYUji iyRUGukhc4RZEH1fKl5Erxkcgw22Dsfz78zDctX5SF7ht joM7kROZTuchOVo6wI2vFs1g23wYDKXmNfjLSluVh XyVDz6zDY6pc7D8mRyydKgUXSLs83Px7BNpcC5egbyH7SSkNdC bQ8sm Fib2b89KRkzpztgY8U7lNr1kyeRbjPwLYNulBPZTy1F6hDauZn aLBD0A/q8ReJbQcLzKToRpSevEEMClKyHzoR1K1keV6n3HsMWx3gKbM2E QXKI9T5ZIXSV2FrgoaOWO6lcOkaCBG3z/6by3CSo/0VuByupWZR3A1kBpAwYnpvB0 2aW2o3u/N9g8qn45p/SXFH6PiZFM/WEdXZXEvHZ0jZgyEl00oyTSP5TCXCWSEK7IMlk/L J9Utn2PkFokPn15KwN0zHkDa9Ltx10gtYq5cxsV62TphGhpw/u//jT /exBHT57E0UNlqNE78M1xg7D3ILttdKPhkxoUvbMHlR dxIkPy/E3nwXzpg5DXdlRv8 PMffiActguHe iM27D PkscP4699iYJn3Ddg1R/H6879D6bETqDxIZSdQ2bYEHC0/iSvKsfp67P0b1eWuxHt7y3CUrhtmfRMPDvwIz7/8No5xu46Uo y9Q6hppLSbqc0ywiIR9GX6vEXCPf9rIfrfgIEfSPoGXrI2mtt/0wHaSGB7HyclUkLCXY7jYTDu3V/WA1dIOVwhRcRWTewoKVmCPTX6eM5GPY/BDrZUtH1Oeb5LgY6LP0tt Tvln031jaHjSfizE67rQevzVB5ZKBrZAVdP8R7fgY1r1qNgfzU atZORsjgXq1avQM4cpXdeB9dZ0qYJRphHm6WguVAPr94A2Scip bukYSYl3XiuFvU6fbBf8PpqlB1Szbh498N9gT3HBntOdJ2phXe QHjz62CUXvPAOsWDxPDvMhlB76iZts0DQR nziiSKJ6HDKRMS1K3BvlKDuY2OJSEe80MS5CRsm16S42Xa9gGN ZA2wV8Kgoa8RJPAPA4PqSfizAqB0nmRvPUEXczQdR5aFlxQUKx Z2xasE9oLYwtuklJhobjcpjgHKvLeG4kixsPLhPFE8pNWJkmSl FEWKrFvIbPCRBRXLlk v8KD6/WJse2MjNqxdifXvuGGYlYlMHkLS2pH59Cqs kEm0uam cMU/3CSHxNSH1 BNbmL29Pn oeUgvB6UCNv vHCRxetmd1KXgsH8rHxD1Vo5mGrJ57FurWrkPfdVL8iuFnbLBD 0Ufq8IolJI2G5U95R0bKNTo4UQadzECpChbb0tlQWCfVQJdIJb awgqC62bsCv Xb2 q0K9vUe1UEyURzV18ZyiMrRFFO5oZYJKZFmtqTkV4C7ou0NOp4 UVWzoPEsv8RzYgaoLehhYkaRMg813BC9s2IhNr2zyh/3u9qGviU4kG9woWq9K/201qaYbj fDYhS8thHr16zGyg074TakIH0eJdzEbRYI iJ9XpFEP01C9XWyKMrkCKJtB3D1LbImqIcv7R8jxUKB317yZpJ 18A9/vATPIZDg15BCYiQlQj34TpVISGeTv/Pwfo/qIquGibJTWSS8QwNf6Bje5gl gr8XiSIryKce8qLtplcpD7/iewspAGpXUzbVodRJf5t5zoTiYyKYOJfOi q5dmzIemo5MqabgybbddMyYB1SBxdZZhIaDRLlTWjNSJ eFDw5r4mHNhChg MRK7oyFq8ZfmtrQQqsVJd2RjrSkw3t7bjqgS gKYibpc0CQT g78 RkLAfcJCE7Y/keYt4Cj juI9J2MrzAi207 U3l6gHHUcK4 oYOe9w/99WUi5xj1L6Gcq3kMoi5XJ1kjwHooT5FE9ZuJd/mevgOPrb K8k8Kku5RXdiCErQVtCbSPLJFDHdGrzfpJhsgUR/QzlobhGeT7mMlkwraRY4qnObtlHioQ/YJwo718TlSgqdSFxxmKsWrsGa1ZTWLMOK2YPRs2ufBTxHPA7RS i9ZEEOp3H4ySIkut3t vbYduw5EY/ZP5HTV ciucHln7C 3qje2kqM1iEp9cn2dv9kCcyXSlH0DuW7mdosEPQD seX7YIe0bMv2wUCgaBr r5FIhAIBIKvFKFIBAKBQNArhCIRCAQCQa8QikQgEAgEvaJHk 1/EZPt/YJZYrJdIBBcR4RFIhAIBIJeIRSJQCAQCHqFUCQCgUAg6BVCkQj 6HpIDK0fwSrwCgeAro/9MtnsheQG8TE3klXZ5fatbnydN2dmaVD6g VXK/0r7woi8LlXCjyj aeCf4U6Vyrydl1qR4dV8PVSHj/2pE5p0QEflNc2ncmVf6hpq020/9G934ATwxWPAoP1ALK/rdIb2Z0pN6wDniSsG6sMtCDkJ0O Gf9FIou0U1f84XRL2O38LyV065haVX5OeTbanYunKsXAVbELxW TkqgBWZT6cB725AIa9l9mUxaynWzNWh6g2qN8zy/wHGZSL3ERNq/7QB247IcQG47anA7o0opPsQHgsyc7OgP74am9/1x1gfyUMaisP6Ue8qLRgdbAszMXuCSfaD74Pn/BEU/7oIoDIyx4VZzdNThcIXC6GUrDWnYNE8O5IMOv qxVfrUf3BFmz7S72ULhB8mfQPi4Qk7xUSwI3DSWh/RMKewkASzP YTknhpLKc/5 HScB QPlJQN5OQvcWkom8WnAcKQspTgmkFOLomIEknBXY3W396xS3Q8 7zdzqeHWxRWjwJdY7T035rZ35FvqD6Z1O5b8pKhBlF7VfXS E2KgOUTysvea9O4zoHDqMyKF5RIqyc6uncolcBQyh9CC9JT4rk 4gtyeo/RQDPQCOfibNiDVjVkNNDGx0MbwQKS15W/bMbqld0oEWjhnGGB5jKpA0dq8IKMEtx2A2zzMzq1bAzz58BqoP NXnZ8mLh7xceFPuKu0dkxIeyIPi8Y2o2rny3huzWqs/sWvUXqwBqcpter3G7Ca45TwiyKcvgrUnihvVyLJWcj97kzoPy1 F/kZ/vg3by1BVI5SI4KuhXyiSVrYsppLQfYZOiBdqpBBHwvNWXpQxjG XRygsv3gUM/i39 JUVfknSaDpZePEq /N4jYT2OP8 yoCGg1QfKYw4ZYl2kh8aJT0CvNn0n7rMcJBS Gch1UPtDLccPvsa4dWMb1U50Gr8LimmbVQuL1NPbeIl8geRMok my8jbmVLrlnq4LyUh/ftp3Q8nJRhhn52O9AXpSJthRbBPKQPsc1NhH0p98jvsSKE86Qt SYO/geIpuh8EK5zx/OSlTjcG QIbakTrXLq/Gq4V1FuWZEFLGUKrHVIvK1yvhHm5D2kg5PggfvIMmI31emHV9t U4snBIPT7tb9euCdnYaHPrTKHq5ACXH6/wLRXrrUHGoqn3RyABa2B ZA NnRcjfrbjKsmDhbAu8B7Zg084KuBv8sZ6TFaikzoVA8FXQLxTJ VbIKtGH8tmt/QGlv VftVcNx2k5c8IbCwtpDAlmnEtbNJNxjyVJQ91R7Apd56fbgMjs gWyxasljC1cPL3X xnZSIeiXgz ncjtAxdFwQpCwHPkryio65NhpR8xvqGd/iwKIFnasS0/zlWPV0tt HOYl 04xM5OaqLRkjJkx1wJmRh9zHnEhin YmB9KfehbLVcLcvngFnl2WBhtZA4jTY/Lc5ch7UqXEhk AY oE2ePgRCQ7HXBMSZL2FGxzJ0N3phIlDSUoPaHBxDnhHLj48Mmh auiSF8IZoodsD8 G0VWCqiY54jrhsBjhOVWGio5aowOm TlIH 7Gnrcr2pXMaBtMOjeO7FL7YBQIvlr6h0XCvkOGyTtqxpMQ/rt/zkSNlJ8EeRMJ9IvUU/0HhYtkITSr/ZQw5dQX/zHlpV59s2ocveUMXTiqz0eWzRdUh3T8/STEuxxq8SMpALYyyBphRdZC1tQXFEJpJEvDS23EUWpvqNAhhdG wkNpAdbeQ4ggoyk pTWRVhbupMZOoHLXvk57irUDBH6ugmZaF7OSOFgTjOlSELc tx8Y3tqFo1zZsfj4fFU0WTEuRM0hooY rxpb1G5H/1g4UvLIez/3FjcRkUhxyjor3tiF/7QZsenMHirYXYON/FMM9xAZn2CXxqV3rVmL9VtW8hDYVjtEeHNlNN5Co3lsFz6hkpJ El1AH3dpR9boTzIaV2YmQGUk1u7Hu7Uo64XhigH6hBo8cHx6Kl yFvpX6Z Vd5SpN8dMi8yOhOZM4zS/N3wZEu7RTZUB11TIy5NSEX2UyvkZe5XIPfRFJjD3xaB4IbTPxR JJy5pO6OVBLH3uyT4RwF6ea7hVurFfzGGlIt6 GcyMOQc9a1nUl6yHup/5Y9upTjfz8iqIMWTQIJemstYBVwmwX6lK2XC8xePU10lKiuD6g s3j6LdRuWS5RRN5V 8K6RdpGASqA23ss/3nwIXqExJmZDCifjNiWvhRCEKP/AgaWFO KGi8y64qA26O/x zs2jNahv8GKwQSWkyQpwHy0K8mnu3eNC7UBdu0/zs1QOKRyDWS5nhBu1DTqyXuT0bjDNs8F4rgol7C FOV CI cSYbvfIkeo8aJsVwU8o1ORIZ2TAWnfmojGwztRFoHV0Ckqf 9SkIbvEhEfBwy OxPOQdXY/h88v7EBhUd8sD68HFn0vAX4dB 2v5GP4ioPEqdnIe JNP9Qnk5Lz44RcxaMRX3pJml 5LlX9uCTobOx5HtyHoHgS6ZfKJKYLvy2t9AvK3QIi/O3kuLQPSynkVDXkFBOIGXhJSEfgH77bHmw90TdPton66SZ/mhIYfiGU/5n6HhZIURTeQk/p PDzMlIkCLwTKd8P6C2Uh1XKR HpsPUFgq8rfaWGEXKgv26a0lh3ZpBCoqUSgCqM4rbRXUO2g0Me JPq5TfHyHKKIeUWTpm0krKLDufxsYe4duej6JQu7OS7NjkTeat WYelDip/zNEzm4akgfGjsZk7YNGcpVqzOxeJ57eUkhXmRKTwOpE7Sw9OoR eoC/xxL oJU6Dz1iB/t7DCEJXG GEVkfExOT4NpxkLY446haHd4N1a 1mZoBkXgMH EHU657Rycyawmq1BPz4G26TS2vFmKGklReVC9hxTGyVgk2ewc4 cdbh5pTNajYtwP5L5fBPdSK2TyH97kH3rh41L2/CUUf p3/eusqsOPX5ai9wwKHsEoEXwH9QpGw10NvGL/tTdSr15AQDj3JWBLA0WEEE/tL7zCMpECCO0bu8SuucEMVlHR8F469B7wGxE Sd3pANPWUO7W6SE5Hk2XFXh35ra8BJEiuhr6K66Pr8zql0XXqP V5UvLkNZTz5/p3gHv7saTb4Dr ADS/Jfs4plJ0L99pcV1jhtCfCvWs9Nir 0l/JR7U8qdwd2jk2mBprUB06Sd5wGq5GM xzw/fZXX8sQtVAB3LmGvHJ3h1BFpOaKjdpwVuN6GjbkAVCVsfFC9X 3VPFKAi0fxMK3qmRoqvr6Hifr4P/d09TI1kanWgBbz0am Kh5RdJjpD1Rsc3hz6n3kYqVgNNgrwvEHyJ9AtFonmalAMJyssh ftsbqBc/SPbb3lpO1oTc448lyyL6JfrtqecMaPvyqyRsSUmwW91G9XcHJA ulN6RIKcXSbjSVGU8WymX/ELwfEvSXySIZQMeGhd8kIwtoQEiIm0LlUeDtGLJMvqBzaVEJiT ayNK48T mkBJoeJ8OmONjiaCVL5grlj5PfOBtI58VvbgXme6jtV79HbX UhKzyhlmvcaH4N/ukt6EsA UoGU1cwBM6tOZ0TLumgXsN4vn9bRndtExYw81vSKjf2rJg0T1G uI9sRdGuog5h6yEX9JPa52KCqcbOD06jvmYfCjt8c6JiXzmqo6 3IyFHPSehgW7QYkwfVoHJvZz0RPzV/qoBLb8XimapxupGpSB2rg7vmjPRq8NJ5NtVbajpYFk5DUrQbJ6 V2laL0eCOSZmZIvun90DV41A6Tx4XjynCeQPAl0i8UCb VdOtBEqo/Aur0wD/iKfwMSPiYBCz34ggWrh4SuhIkUBN4eIksE54o51A3nfLuJwVBa fH8keEPgFrSGlIa/f2Cytcrr GSFaA7SgKd6vvHcDnPXRT/IsU7OcO1EUXKYiC19ws6hzoul/9SuVFU76CJ1L5/o21SmP9QtesCv ZM7VYGkKLSgcE/pXPldA50LS7fDtwuT 5fN7yl2LKzOqhnXVxUCs/YHHkCeA2eXUSWxWddC9aOVGF7SRXiU54NlJM71QNXpwKy/a0t7QwnkmJPo3xP Dq9 0pR3ZwEx5zwys37fgE2bikL8xqumkpse7UINYPIelm5zt/GtSuw0HQRJb/L735eha/bm4egmdF ndZ8Pxmaw4XYsu9T7CuthG/cQqxY21529gSg4g9b d0Pierfb0bx TuxSPEpv ZZLBpai LfF5I6FAi fMQy8l9DxDLyAoHgetI/LBKBQCAQfGUIRSIQCASCXiEUiUAgEAh6hVAkAoFAIOgVPZpsFw gEAoEgFGGRCAQCgaBXCEUiEAgEgl4hFIlAIBAIeoVQJAKBQCDo FUKRCAQCgaBXCEUiEAgEgl4hFIlAIBAIeoVQJAKBQCDoFUKRCA QCgaBXCEUiEAgEgl4hFIlAIBAIeoVQJAKBQCDoBcD/Dz5zen3T7/yYAAAAAElFTkSuQmCC
https://www.theapricity.com/forum/image/png;base64,iVBORw0KGgoAAAANSUhEUgAAAu8AAADICAYAAAB YtQ/2AAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZc wAADsMAAA7DAcdvqGQAAFTLSURBVHhe7d0BUFTXvQf b3SBXcmGrLqIK6xmEVZcdYmsiIoCwVUxYtU2pNVG33u8Rv8103 Ey9tVOJpOXyWReXuvr899/bV/aZ5PY1uaZVhNJQipWiW4MKlRWXGURt7jqqmxwiyuw4pb8z929w IIIGE0jyffTuc3ee88999xzrzO/czj33AeeeOKJT0FERERERPe9YfJ/iYiIiIjoPsfgnYiIiIhoiGDwTkREREQ0RDB4JyIiIiIaIhi8Ex ERERENEcNNJtO/y7 /khRxeqRNmYCRaEbT9aC8FdCkF2LNysVI1/hQf6YJ7fL2HpR6ZH/9myick4zhjWdx4Vr38Z NEsZFa/DU0kyMbXOh9nJA3k5EREREBPQzVaQC rxirJmvFyHl7QTh fANvLrXJX59MZRjTUifqEGb2w77Ob 8dQDD1DDMKYB1phF6TffVBf1enD1pw759lbj56GoULzYieHI3t r1VCV HnCiCYkwWVq4phFHtg/3tbdhZ5ZP3fEaiXOYVa1FkVsD5wXZs/8gj7yAiIiIi6rfnvQM3bgTQevUy3A0uuM77EBWvQ9zfPbB/XIGaM2JbfS3qnGdwyf9Fhe4K6GYsw4oF6dAFG1DtbBq4ESH1ln 9zDYqyJiAu6IPr7Gk461y40NQGPBiP5NQ0PDJCbG9NwJSU0eho rMXxUx4E mjidLSIurnyNzQ1/AWH7ZfQ3keAf0ceiEFCmgWmhGFoqheNkfODbIwQERER0VfC4D/SNMqClcXLYRrmRMkbO1BxSQ6T4wzImpsFU6IG6hEqIOCDRwSet oOV8AREeD02CyuWZ0PX4oTDp4Zep8bN jLs3OeGKtWCrEdToR8zEqr2q/CIRkJjnBmWMX5UvrMT5edEBmo9LLOyMNmgw0jlTfivuOG0V6Ci DkhfVoT5aTqopc7z9gD8bW3wn7PhTw41ZmenIspzBHs qIS3a8yLCPbnrMTqxUao/S6U/ F3KKuPGJoSZ0T2DA08xyrgnxzueUd9BRwtGugSwmU856xC ccO KQ8RUMg94kVsMQ1wrZ7Jyo7LN3X2qSCPlGUTeFHY4MTFYcq4Gq W6kwBzeRsWGcYodWooYIoc5NHXNMRVJzyw7hM6nlXwV1VicZYH XRaNYI D1x2Gw5Vi0ZEqKDSXxzMmDvTDEOiKJfI4 oFJ xHKmC/JFJ0lkvdCEe9H5okPeJjIerOBXuFDZWD/QsFEREREd1XBj/mfYQOU6enIf6BJtTZa3DheoeIQ7XIWvEUCqcnQhOnRowiCmrNK CRMSEPamHa4at1oeXgiZs8yQTcmERMS46FRdeDaxb/Cm5CPb389G8aE0YiLHo7hDyUg8ZEUJI8RAa3yU3hrK1H3dyOWP/UU8qfoMFodg HRsdCO1SNlisiv/SKaHpyAR0RwG6MQ5ft7EO1BsTRfgHf4RMww66GJaUHDidru4D0 6ERn5OUiLa4Nj35t478Q19Ogsv9EEt sCfDeA2CQzphtHQz0qEYljRyM2Jkb8jocueSqmJg6Hp84F3wMJ mDorEymadlw6VYOGYRO6rzUpAZrYGMSoRX3oUzBtUjwC7jO4rJ yGZU88LvKIgzrmAQRF6D1SuqYJo9H611q0J06HSTRw4sbpQ4G7 KkoFTbwOE0zT8IhS1P1ZL4alWLHm24/DLI6JU4m6ixXnSEqGaUoShl88DVfL6HC5dAnQT0hEfJwKMao4j BLnSZtqRNz1s6i/1Nrz2omIiIjovnd3wXtHK1o VSE2cAb739qOne8fxPHLUUicqEe8JgbNLjvc0GO6ORlxiiA8Ve 9g26//AJtXh7zFc5GsuIyK3dvwq/8rRXn5YdS3jUayIV6Es624cLIagZRFWGAehbbaUrz P9tR8udyHP8kFhOMyUgaeQPVf9yBqpvJmGKIha/yTfzs1yX42HEelzxX0HyzFQ2VUnkiXjV9aAIyZ5uR8PcGVH14D A3SNdxGKHhPHY2YVjfK3/wFtv3xTzh8ph2jk1NEMB Hjss1qL2qhvHRqUhU dFQY0fDp4nhax3mh7Psdfzi9Xew7y8NGD4mBYbEBKjbz Nc9FTkmOPR7izBL7buwN6DB1FRewVXPadRfbYVo6VhM2NVCF6q wB9 tQ1vlh5ETbMaySkimNdEw dqRMLcAmSO/RSuD9/Az157B/s/PIyLwx BMWUCxiivwVkfQKJZlEvdAe J9/D6q79FyYfHcUWZKBoJOsTH OFyNKD57/LFEhEREdGQcNdTRfpOHYKtATDMXYGVa1aicKZeBN CQgFVqEtc1uzEkUPhISzqcQaM1ygQcNtRcdIrj1MPwH28Ao4r8 nAcxWgYDDooxd5grBG5T67G6jWrUZgRjyiRRKEZD8PY27xKG/DAfqAMFfV3OTxExPZ UcbqunA gYt2OBp8otZUGBmnRsTV9eRzwV7tDg9xaXahutYDf4eoD mYNj kVwTUE3NRJK5n5YoCpMe6UX1CTh8SgMchztUk1UUQ3tOncNYrf seooE6YIK5bLTbfhDIpD0VPiXp5qgjZSQrcFOVVjxVB/oPhXNDeCOfxanik9kvQB2eNE43iJIpYjbg34SRERERENHTcZfC uhGH KhQ/YUVWhhnGRB10YzThMeiI6hHcBgMiaJWjU4UIQhXizDc7RGAe2f ktrQfl4H2YElFRUg4KaJIMMKYaw8tEA7QjpP0iGI4NNRMGr80H 33VRiFgd9IkiAB6EYLsok/xbCual8oXW 6m5YLANgYjr6rwm6ZpbastQut8OT5saOoMRpoxsFP7zRjyzxgp jXCiZOM9NtPU4702Rh/ivuObo6BioosRvhXR8d71IDR21VCaFEuoYuXCh gz/DJHKLpVL7JbKQkRERERDy92FcHHJME/WQ9nuQeWuLXjp5VfwypYdqDjf3YfcF/8nHvilHvgxIvgc0x3iKxNFEKqVe9Nv/g2 Zr8IQP1wvr8VLzz3HJ6Tl5c2b8Hmlzff dSMgUacbWhEcJgaxpm5MGt79Z0rtTDNMEMvNQ4 F J8HQG4Du3E1lfEtbzwCl59qxyOK4B2YgYyjKPkdH3ojMdbPsFV qes 4Eb5tpe66uS5514Qdb8ZL/1oO2xXIltERERERPRlcXfBe1eMKHUFCwoRFM8SQXHSbYazyIIX Hag67UVQY0Lhv27A uJiFD 9Hs88ldsdOH/6N5w97Ya3Q T5WBHWrBD5jtPAMHM51nxnHYq/ngVddBBtgTbc7FBAOWos4rUGWGaaMGGKFavXrUfxUgu00XJ ISJwPmJDxTk/FGMtWFG8FquXWWFJNcKyoAjF69Zh5bIVKMw14vMaVRKXvhxrv7 cWRQvMovx eM6Jhkxn73hHZDf5bbRdwCmXaIBIU16uWCPysUCv1cG8eA3Wrl uLVTmGfublJyIiIqKh7O6Cd/9ZVFWdhW YFpYVG/Dii5uw rFkqAaKQYNeVO75HXYdcsDtVyB giE0jjt4yQW3TxwsDxPxndiDPfvs8HRoYciwoui7G0MBuX5YI5 y1bjS2izT1p BqCkI90Yq1G4qxfEEeMidNwPgkHfSGJMT3jsJ9DpT dgdKT3gQVOtgnJGL5WtWY3mOGQatAn5XJWzHzuKGnBy4Kf/3Xvg0NDOOYoQe5pwirH/uZby4cSWyxknXUYGKU81yuj50NZQCcO7bjdJjbrSppXxEY2DDe hTNMUDlc8FR3z2d5O0NhyYtG7nzrbD2teRkwaDp9VcJIiIiIvr CDX6ed4UGhkdN0A3zwml3whsRISri9DBN1kPV7sFZhwdRhnQR/LXBfcIO900dTI8aoGlzw37CDb8chCqTzJgS60F1becLq9K2XKx abYXhphMlr 1AhfSSZmhHOA9ttALB1ktw1ThDc8h3UsQZYJqih0YRxPXzdlR7 lEiemgzlZUe/HzpSjpLGjOugEflKw1m8rmo4LoYzVmiNsEzSigaFA9X1vq4yqg 1mmMepRLAt0l6Jgn6aGXqVHy671Mjo 1oVo4xIn6wFroi86kRew5TQTRJ1pFVC0eO8CmgmpsM0VgFvbTW cnZUs0uunpEMfK pUnMfdGt4cLuNYKIcFEWhyw3FKPucwdc9yyelDw4LMRmg vYGYyfl4LOU24/7bRePqrW3YfYrzwRMRERHdTwYfvN9L0Tpkf2s1Ciaq4Pc1wnvR jcabGugnJkMXB3irduGNt 3wdfU2ExERERHR4Od5v5f 7ofngg8PPKyFbpwOCWMTkagbDTWa4T6 HyWlVbhyL0erEBERERF9CXwxPe9ERERERHTHONs3EREREdEQwe CdiIiIiGiIYPBOd0wzYyU2vvQyNj5pgYZPEBEREdE/zD0PvTTTClH83fVYvcgU/lz/l5lSC8M0C8yTdFAO5loHSq9QQqkcYH51aZrJVDMs0wzo/BhtTwooR9z M03StJ7GwZa3LwotjKl6aDp8cDvP9j0j0H1ZL3dAoYZukhlZGS bo4249r3KsERZp36jblClaE76e1LuoZyIiIqI DPzCqtqE5cVFsGh7BSrtAfj9V G96EDFPhscTdJM6EoYFxdj5RwdgufL8cbrZXBHzMfekwLaSRYY tUF4TlWHPrQ0ZCg0MC9YAesMAzTyF1yDfjeqD5Sg5Iina074Lg Om76633uFg8FIFdvy6BM5WBXQzClGYl94dULb74Koqw54P7JCm xFdPW461T/TRGx5wo y3/wdv2pMonKUPNaqCPicOvL0T5fXSDVLCsGANVs2NR NHO/HGB87bfuhJMSYLK9cUIrm9Ejtf2w1H5Hel7tN66Uk8dxkrsGqJ Gdo2J0p/vxO28/LVRmthnr8UeRmRDYAgfHU27Np1AP7UAizNs0R8wErsc1WibE8p 7NKJ4gzIXVyALNEIUXcm8Xtg/6gUe45HwfovK5E1pnNHAO59b2DbAfet9UJERER0GwNPFRkTj7T pJuhimuH42AZ7nQuu815cvzkMqrgEJI5PQVrqSFyvd8LT2o6mi xfh/dsVnD56FPV/6ycsGRaHaYu gccz9Rh 2QHHpdtG feXYWoYF34bK aIIPiGF67Tp EWAaw6PhGPpKRgZMsZOLq iiQMJv3lT5H4aBamah A y82HD11Bi6XqOd6F rP1KL YjNizV/Dqq9ZoFO2wCO2OS 2IuphHRINRuhHeFF7xgtlciYsE0ej/WwFPv7LaZyR8hBLXV0tzn86BdbH0hBz/ij2HrmM2OTJmDw6iIbTDeiYaMU3FkyFymPD2yVH4b3tNJ0KJKT nItv0MK6fPohyuxft8p77uV7aI5qnSsM8PLF0NhIVXlS uxN7z1wP71BIXwlehWUzEqFu88B5yoGTtfW43AZ0NJ1G7aeZeG J5FvTiPO7aGpyu86A5GIN4cR5jkgpXGq4j7fGVWDh5ND5tcsFx 0oGGK20YpklCymQjRrc48JczjWi6JP59dIxC4sjhaHbZcbyhuf vjuUREREQDGHzwHtWEUwfew/7j9Wg4WwfHiSpUHKtD62gRvE YgIQRf8Pp0x6oJueiIGeaSO8VAZYIribPw9LFC5Gbl4ecrEcxN UUER7Gj8WjBUsyaEAfFcBVGj5 KrFkWGKIb4fRpYLEWYOFj85AzLwdZj6ZBrxkO30UP/KItoBibhW s/iask0dBnZSOvMesIl8TDPGxaLnige9GZygkfa00E3nWx5Cfn4e 5oWEOMfBfuYBmKeJUqGGYmQ rVSy5c2FO0yNe1YYrl31oV iQVViEr WmIfZvDWi42hWiQqHLxNIF06H91I3yN7fhD4dOwmE/DtcNUU peugeDsJ9sh4 OQAeVPrTjRhtnoWUOD9OH9iFvZWijhvEec81wH25Ge0xBuQtmY 0uDY49 7A63sO45TjOKovdiBpUgr0Y LQ9lcHrussyHwkFl57KXbtt8Ml5SEW9wUvRqTMRmZyFNy2d1B6 7AJUE6YiZVQHLv61A1MX5yNN4Yat5F1UNfbT4IpOgFncR1NcM2 oOlqPGOxTqxY6Ga FnQjHKjMe/sRimh1vgOrQLuz6 1NXrrZ6yEMtyUqDy2fHOb3 L0qO14YZPzXHYz/gRn5GHOQYVLh95C6/90YZToqFQ43BjmH4ajONHQdl E3ETjdDedKL0N7/Fn/5Sh7rTdtT6NTCmPYLEh2/g1P59qHJ6EKVPR1qieBYZvBMREdEdursRue0eVB6sgKsV0DxiD n3WX6HSQKPRQqNWQzkmHQWLrTBLwZhGBYVyJHSpFljzRNAmD5P oYdjDsCwpQuEsEYwn6UJ5aMcZYM5ZjtVPZEMnHROthGaUBtrUL OTOMsMwVpxvjAGmWQVYU1yErHHSeAcFdLOKULymENnTjCL4V4f SmOcWovifl8M8ZiwsX1 LNUuyYZ6oF eRvu5qRvaSNSheZoHmQbFuMECXlIzkseoeQzY0egO0sYDf7UB1 Q dfC6ShPw64fFKAaEByQveg60Gl14mGiEqcJdgGf9utwbNijB56 aRxHswv2U93DLAIiT4fbD4yIR/KERMSNUAEdbWhrabtlKEZbICi2qaB6UFyPaLioVVHifEFoZlph 0d6E60gZDrn6/ uHYkwqjDolgt6zqDsvzhvh/q2X PD9U rF/S2AZQzgPbkPe8pdEUOD1OL j4dGIc5/shInr4jnZ5J4nsep5f1CX/9SOm4iEJBaI2roxoqG6APhzZFuBgK4KaJzhUYPw10PxiciIqKv ujsYNuNHQ41dBFY9g6iOG0HEJU9DcrwCrVIvZ3QapqeMRkdjLe o/TcWcafFod5bgF1t3YO/Bg6iovYKrF0 g7L0KtCZOhXFkK2re/RVe/UM57H 9BP nKsQGzmD/W9ux8/2DOH45CokiwI7XxISGGbihx3RzMuKG eEsex2/eP0d7PtLA4aPSYEhMQHq9vOoaYxH7pIcJI9ogfPPvw2nOVyDa7 E6xCuacbE9ATOzUhF71Y53tv0CO97fj4OOaxg50Sjy0KCj/s/Yf6YVwU9qcPhIPZq7LlmB0ZMzQ73b1 uO4HBtU3eQ/OlwaI2iHkYCn9QfR 2VUPf 4NKf80AxwQhdnAbJGXnIz89Hzpw5sExOwLCrblxWGjHLnIjhn9 SiotLVXZ6ODkQnmjBNr8aNxrNoejANk8aoMVo0bKQ88nPmIHN6 GrQdl3Da1YJRKSaYJqchfVq6uF Az9MuGlOJ6Dhfg/r28ZieYcIEjQhuL3sR Lt8ji4KJGZaMXdiLD6pKccBR8S13M/1csUB 1nA9Pg3sHjaaLSfP4x33q6BZukz N435yEx4ITdo0DyjEykaR5Ay7BEzClYgnmiLqbOyEaOJQWa4Hm cbozFpEl6JIxS49NP6uG6GgNDdgHypycidrgotv8c6v1x0I Nx8joVrhdF3BTa4Z1YTbSRsUADwTRGLr DsQbLTCx552IiIg g7vreZd03ESwM/oYFtlHDQRb/aGhLuqJuShasxorVxQgPdaN6hPu274Q6Tt1CLYGwDB3BVauWYn CmXqopB0KBVQxEfn7XLBXy/k0u1Bd64G/Q6SJE8Hr FSM1ygQvGSH7WO5h7Xdi8q3X8WWbWW4qpmA Gipn1cD86KVWC2VbZEZmg5R2OiR0E IR1udDWUH7PDcpqC3HRZ G/2m/zQAb8NZOOuc8uKCu6kN6iQR/C2ZjykPyun60hX5BeH3uiLycMJ18SoQp4dlQSHyRjlR tYu2Gp9aGv3wPFxJRpHSePN3fDGTkH2LDOMqWZkLVqBoscMuKW PWKmD0RAPZbARrrpzt71/91 9RCNxTiEKMnRQ BwoKymDU3ooIw2LgkIsoRlrxotWjQj4Kz ugL3Og7ZYUX Li5AXdQxlVeJ5izUg96lNePmlTSheYILmhj/c8Ojw4/SHNji8gPbRQqx//mU8/0wRspKi4O sLEbpREREdJfuPnjXjId lAj12v3wXWuTN4a11JahdL8IgNvU0BmMMGVko/CfN KZNVYY4 REPShhmL8KxU9YkZUhgslEHXRjNFCHIkkRYIXShAWDbQhEBEPB YDggU4grUkSrQv9t8/vg6x6WLYuCSikCNUGp1cOQahRBq7QYwkMwxFlUI3oOlekWFHm2 oU1qJKjVUEXWXowa6lhxlCjX9eudIekg0zfVw/b2dmx/o3PZhm2/FoH2 QAU2mQkjxT5iMtTjHgQ6nDRw0TAqY4T1yrOE7jmQ 2 nRF5bMe2X25HyXEvglLgPWk8IBozpb9/FVv/Zw/ccSZxD/w4e8on8gDcB17Ff/znqyg/D8RPNGH8CPkcMmWiEYYxSgSuiAbChd6h /1bLzeGpyJ3njE8balKj9xVG7Fp43osnaQR6dRIfqwYm763HMaY 8J8aAudt2Ll9B3a/W4Kd4nw7pVlvFBqMT4rD2XdfxY9/Lur0gzKU7S3F7t9swasH3OI6xLN23YdPGmzY8bMt2PZWidgvnv 13d LVn/4OdmkmJfHv47r/Tps2RERERD1Fhk13LloLS042jCIOClxwwtE7qOsIwHVoJ7a 8hyee EVvPpWORxXAO3EDGQYR8qJIsQlwzxZD6U0ln7XFrz08it4ZcsO VHRO5TcoCgR8XvhF0K4aNRa6iGHLGKGFTvMpfE1XQ38t8J3Yjc 3Pi7I9Jy8vb8aWH72ELXsct 1Z9nsuhRoEmnGpSI6Y51udlAq91Nvf7IGnqfvowaS/EtTBkm7oOSCPb8LeFg71N/IzzNQShEQyn1kYgL0ohGxzhR e1X4flkGJJFg0ffI hug7 5c/x757mlqRWtyJ6khr/WhiNNSiiHSen8CMjnVIjGizpWTh6ixPjUVOiiA2h0Ofv8a8T9W i XPrkmDvGFrs9/Q94v6fHk/x1tvk9C9/ymX6QT5erSq7c8cMmJikPlKP/QhkpXFAyT9BA1iUa39JcfkSDog6u6Quwvh 1jO3xjRCNJK67H54Hbe7unioiIiGhwBj/mXQRzLTeGYVTiBExInYrM2XNhtVqRMUGNDp8Tfy75Exy IGKTzF1j3l3RM/HkEzlIjgvCd9GNy9dV0JtMSFQH4XUehyd2Mkwium7/xAXXjUSkT4jDw0nJGKtsh6euBnXe4UiZU4B56QlQfdqKCzWVqP 97YmjMu/rGBdRU16FJDrRU46bCYowHPqnDkWMNUE2YAkOiHhMmJEDd0Yzm 6DQsLHoSS YZ0eE6g/aEZCQmPYIJ4 IQ034dbSPNWPKNJ7HoUQ2az13DI/P7nm0m2BZAlC4NRn0iHkkaiZiOIFQT52Fh3nToH2zHhcoyHLqi F f6Bqzpo3HtdA18I/tJX2WDR78YX8vPwtRUHUbFDkNweAJMs7Mx26SDqsWNY U2NAxLwuTkROiT9IhTBPGpJg35C fBnBAD/1kbjl2fhseX5MEyNQUJGpWIR0WQnj4PczNSoI3yo/7IQdgvB6AYNxtfWzIbCW012Pv2n9GgmIBpk8cjttUD59U4TM chvgbDag6Kuq2s6N4RDJmP5YFffRlHN1vQ333SwBd7td6 dPeg7AdPgzbR7bu5WMHWhPSkDY6iDN7t2HrWwdxuvEB6IxpSNT FIw5NuOBphnrqQizLSwutn644itbUhcidMhoxn4rnPNGM3CWFy ElWI A5jv37j8P3kBkLF2XikYeiEBw2EilZ4vj500P1f8b2AQ66/KItoOCYdyIiIvrMBh 8q2MRr09GskEsExKRMFqD2GEt8Jz GO/9sQRVl8MBbnfwfgpnrz2MialpSEk1IXNePvJmT0XiQx3wnbGhr PwELt4cBUOqHonJZsy2mJA86jocjusYOV6PZFMW8vKyYZ7wMB4 IDoPigcEG76dQVX0azvPNUMXrMF7kNSHNgqwMI3QPAU1nDuPD/YdQc2U4Ro0TgeP4CUgxZyIrXQS9Kj/c9iOocKswPW8eUhIewgNXHKhxS0GX7O9 XHD7EDN2AgyhvM2YOlEHjUo0OKpK8c5eB1p005E3V9TZwwo01R 7GQbu3n/R2nL8OjByTiAlJiaIuTJgu6jslabRosPjgOPgeDpzywuu gOYHdaLu9dBPNMFsSkZCnAgAz1Wg5J1yOBoDiNZoMV4Ew9Lc 1OnT4fJIJ/Hvg/v2VxojdJj3rLHkTn6GmrKdqGsvhXt165BkWCEKd2C7BkmJIxox mnbXthCgWaYOmU28i16DL94FOUf1aP5lpdZhfu0XlzX wiNH1BBN2U60rTDxPNwHPYLregQjZcLf4tBwiPJME5 FLNz85BlSoR6WADuo /hPXsMLKKxmmkSdfVoJqZPSRHXIc5zvkI0gkph/2QYEsxWLJyXDuMk8SxazEibEI/YoBeOD0vwjq0BgdB88wzeiYiI6LMb Aurw9QwTDOHv14pDTWQIo2OAHyX3HC6PD3GnUsUWiMsk7QIXnK gut6HoPQS4KT00DR5CnGc11UNx8Xu4QPKcWakGzRQ4jou1VbD6 Q2GPuFvmqyHqt2Dsw4PogzieE0b3CfscN/UieDJAE2bG/YT7vBQBUExyoj0ydrQy4bVdeK84a3QTEyHadyDoXP7LjrhcHXu E8S16aeYRN5KIHgd7rpquORPcqrHm2GKD Cs3YmI6cwjiOuaLF XyNHXYIf9nDx9onTNYpw43qU6KOQhv7SR iEOc0waQXdSHqOdjug7vWAXev2X2klzVNE6Q0QQSaXOH8I 6BNMWiKVUEwdHifoXq2yHqWz6PMlx36hZRrpPu7uOkOe nSPcYfZRLDdOyYhRlqENfBH3jw4G CHp/1ktP4rlIFc/FGAW8tZWhZ66LUgvjVCPGjpDqTzyT9Sfh7PyAWOQ Udbr0jPe9ayFhZ4bqRzid6isJ8UzG3k5gtpghnmcCr568W9hqH ycjIiIiO4LAwfv9NWm1CP3iRWwqD2w7d6Fikv9h 5ERERE9Plh8E5ERERENET0mHODiIiIiIjuXwzeiYiIiIiGCAbv RERERERDBIN3IiIiIqIhgsH7P8KkbFgztPLKF8M4txDZk SV 4YR2Qss Mw1k5SFghxTaFpGIiIioq Cwc02ozTB oQVGQYNVKENbfC5HbC9W4bKL Un300oerYIJvmL /7andj8f47wiiTOjMInrUgfqw7NTe6/VI3S7SVw3K4qFq/H86NseOk3dnlDX9QwL1qOvPRkaGLCW9qa3XDs34mSE70mCv8MC p55GQbXc9j6vrzhc2B9 kVkj5VXIl2y4YVflskrkQqw/jktbC9vRauW1eMs/HL6DsoY0onupH2Quvolze/kVRTyvEygXp0MUqgKAfHnsp3njXIc9lf6s7Ta/MWIlnrCpU/mobypvkjURERPSVM4jgXY/lz66FsbkcJXsOwSGCdaXWBMvcbOh9b2DHgS/3R2bMTz2PpdjTHXgrLVi9oRDxF20o/eAQziIZc5cWIlfrwe4t21HZV3UMFLyLPIueKRRNBjcqPjyAyho XvDE6WGYVIHemDr59L2HbR3Laz gfEbzfIkkE5/9ihv/dLdhe1VfF3D547yF9NZ5/HNgzULoviDJjNTYsiYfno1KU2s4ChrlYujQX2ou7seU3lbcE5H eafuB6JCIioq K4SaT6d/l332buBBLZnegZvObONwa/kBPsNUL9 kq1DT0 mBPnBHZebNhnmSETu3D5Uut3V fHGOBdY4O/rMetMqbJNoMK bo/HCJtBJpeEfaiDo0PmBB9mMGxNS50dnRqE7NRv4sM9JSdXjIdxk euTxhauhmzEbu9KlI1kah2etF5G71OAtm52Rgamoy4hXNaPSGy 6afWYDZie2ov9gcTthLgjkHRjhx8MSV0LrxidXIwRH85NdluCR OINWF67gbcZkLMU1Tgwpn5NXJUjKRM8LdlUdPSmSvWYOsB45i2 5adqPL4wuW 4Yen/jgOHzmK09dMyMt5BMH6C hdys76cn8irSlFfYo6ypgKoyEeD3hF3d0IJRNFyIfGtx/HzoTXJVIjLGtelrhfoj5bmuDxR35KVuQ1OQs5M X67tyvNCF3kQmx7gZEfpj0VnoU/tNixJ38Lf734O26ilOQOS8W7kN29FUzXRLMyEkFnL3TTcpGYZo Kde5w/j2fHeleRz4nahjn5GO2Oa3P50Ny /pQwpRTAFOsGw23XLQRRU/loOPoT/DrfZdEnkG0el04fi4OWQumIe5UBepa5KQhd5peNJ7/dSnUJ7b3U48ypRammTnIEtdoHPcQrvs88Mv3n4iIiL4cBh7zfs GPNowUQWH/I4v189fi Y1FsIxVA9EamPLX4fvPivXOw8ZORtaMydDJq510IkDMmty91WA W64 tx/fXzUe6XgdNaKse1nXPY9MTFtEoABQaE av z42LDWG9ko91yv/bSOK5ySLEE0BrbkQ676/HgVJ4d3mb23Cpn/JRbI0DCZaC/PidXjmW9KxGphnZiM7wxRKNzBD6LP2HmdZr95RN0prPdBOzL7z 8dtjrLBM8KPyrVKRSx8CAQSaAtBOK0BBXq97oLQid36yCMql3x YUbfwhnsk3QRMtQtWxYv3ZTVg9p 8S6RdLdVwIs1YhEicj 582YtMqizx XIuC74q8lpihFXmF9j 1AWsXiLsxNQNzZ4kAd2Io4W0oYXlqJSwdlSh5v8 rujcMZhGoGuQV dmZL66rODt0r9VaCwq 90OsX5wdej6KZuigFs mYU4RNmxY3f1sCv3XxxRkZIu8H00OrfUw0QxdrAfOfb16xM XwnFFC OsXvV/R nD9ZgeqMDOgepxTAHW/ AZFJq14l AuIQJ2Vj9vbWwjgrvJiIioi HgXvegxfQ tA0zH2sQARKj0CvGo6WlqvwRXZbTirCdx4fCcevfoTtH9ag7rQ dxz5qQGzGQuQYAzhYfeG2vae9e7alHmLjwx6UbN6KXR87II6E8 cnv4PE4B361eTvKT9ah9sQx2P7aAY2yCfXuG8j912KYrpbgJ79 8D8framE/ZkPDg5lYmvcILh1WIONrk9FU gpe31sXLtvhgzh8UurFDKDuyH7sP1YfOndfepbPhCzreNyoPgj 75fD TsHYNMyZHANPX73I/fW8p89FQWILKkr7631uwhmVEYunxcNRUdf1lwvt4qXIf6Aab3x 4GdmiDqY3l A/f/4Oqk7Xoaa6Akf9Koz0n4HLG zZ8y7drwWxsL/239hxqBZ1J4 j4th1GBYWwhJVgaqGOVi4LBanf/z/4a0aUWfSfttBVJ0VAafHjoP7bahpDJehTznFWDtzJNq8LWgZdr nnX2B6uMued1Gv aLlsv9o P6Fnp048ez896t4r1qqg8M4OtyIRfMsiKn5FV55vRw1oWfT1fM vJQPWhxv2Q/thq/GGztNDWhYWJt3A8VuuIYhY4xxMifH0vO93kF6/eC2 mdKEkl/8EfWiAk1PbsSaKc047OijHDkLsWzEafzoZ2/hZF34/tsOVsHVJu8nIiKiL4VBzDYTgOPtLXhBBM622jaopuZi1feex4v/Vgyr3LNtMOuhdlei5Hx4PcwdHs rNyFb3jJYvnpbxNhxA8xJarirSnr2TJ 3ofSQtCULxrE uI5dhW6iAQZ5UdQ54FbpMXmMB74WJcbPXI7saTrI76B Rgoo7vX8PNFSP nAAvvscKtNsHbNGGNGwVQlnOXl4g5JdeDHyQ96jpcOVJWh7FSv Hl5Bul qCw44Y7rry5B4FUfqfdAZLCKFD4GABsZvFcBi0Mq9z3egugRvv LYLtosi4Fy8ARu ZZZ3fP56PjuiDmzi/sML5weRT49bNGgCUMeF/ IzcH30Y5D3r8sg00vj4lfOACp 1/0ehSJaBdXtjm8KIDDKiFWLLDBo7/iOERER0RAx FC02QnbBzuw7aeb8dLzr6D0iha5TxaJ0BpQi6Ai2N7HjCi1Pvi jlXccMLf5XfIviRrKmCBu9hgHHEkFhUIN/WMFKFgQuZigbGpEQO1Fyf9sQ9nlkbAsKMbGl17Gi5s2YPkAw4D 65oW/TYGoWHk1kkaU40YAdzwvzHmpjlSIH7A4FbDVBWHMzQ0F08r5WU hucaCsVton1UEbAj27cm9Lul8KbXqv irA/PibaGyW sgrxH3eBUdQj yiZ/BDUWfPb xurA2o2QNXvT30vGx9ywFMykKuvOvz1vPZEQLi2RH/C97ahukycH30w tHmyKqz2dcE6tAW 9/F4NJP6YAxUuNCLo9UJgLUbgkvJg0ovGoMYV 3zLt55Ft2PJHB27qs1H03R/i5Zeex8Z/tkIv7yYiIqIvh8/Yj xHxdsOeDVaSCPHnU1XoRylv2W8tzJbB43PC6e8LomS/xumRLw0VV6/nPA2KzFSf7vR5B74W2/Cs38rtv6897IdpdKIioALFbtEcLP5Jbzw/Et4o/om0q0rMNiR7t0ccF0JQpeaJa93UsJq1KHtoh29QseB1R Aw6tDxhOd46tvz/mOHZ6x6bCO0cI6JR7uY2WiOSGR6mAkdDNDKwOS7hf 5sC2W pLLH oCCdqtqP0N69iyysviDp7BXsuicZaYUF4351o8COgUMhTjN6fB lUft3PSBW HDsbeda 0wji2DR57rydiUOm9qDtWAWf/bwTfwn iFNt/uQWvvPgCntu8Bx5tLgoXyTuJiIjoS2Hg4D19JTZ8dzmyDJGhpR pZy0zQet2oFGuB/UfgVFqwaoW5q0dRabBizSwdGk8eCAe01XXwDEvGzCWGriBVPbM IGeMGCt4DOPCxE8pHV2H5tK7cYcgpxoZ/zoUGdpQf98O4rBi5XWVUQjtrJVYvlvodjbAuFYFRXHiPlJ 3rTsokmabKZg5 P7Jin2VuKrPRXFO53WIsiwpRvbYRtj3RzZTBsuL0ncq4DcsF9c TWU5RP6lWrH52E4rnyBsCZbA3qGF6ogjp0Wdh 6izO1mqg6vQ50XWgRrmFeuxfsWtTRTpfp19OBvrIu6XNFNQ4VP yC8bKbBQutaB79MVN G/IdSbNNrMkF6aufZ3MWPnsBqyc1X1/pdlPsp7sfk7uVwPWh7giU04hciffctFCBcqqetW90oDCf82G7o o9/JeRHnU2iPRXKlH2bglKei0OXxBBnyP02xb6i0s35ZxCFGZEDHG 64UfwzmJ/IiIiGgIGMc 7CAKXroTVrIdGIYKHDrFJoUCbVwSMb xERefchUnZWP31PBhHKcJBw7A2eD7aiTf2urrGYSsnF6J4eRZ0 0SIfsS4FItU I9I7uudRv9185Pq5q7Ei1wjtMHHsMAUUbW6U73wDZS4pdxFciQ C6cEY8VFL5pCZJmwc2ab8nGYWrC5CepIGiM5rp8MHx/v9gZ5UKhd/biKygDc/9vDS8r5db5nkXQtexVFyHSi5LS2RZ jCYjzR1fvhJlFMpyhnKF354qkqxfY 9ezhO0nJsXGdB8MgWbNkT eKiXAczdVBJ1ynuUbDJgbLXdoTu0S31Kt vZI1oPIXqLAhfbRm2/V40JMS lcuzYdSKULazzm6I vzdqyhLWI3nl lw9vevYMfJ8K5O pnLUZgnfXgofJgiWoGA14kDf9wOW4/3ITrd5Tzvol5fNrjw3M/C967vZ0ec42UDXM9tReQdvuW 9lcfsGD1c8uha9iBV34X8bGuLj3rXiHq3nHDu3lyH0SMzoXWcD pL Nvp7FTvq5K7Fijvj3Ide9pO2SDTt Wdb3LEZEREQ0JA3uC6t0dwYTvA/WpJXY9IQK5S9twwADOoaAQQbvRERERBRyr dOoc9DegEKZ2mhlIZyzDciWFP2JQjciYiIiOhOMXj/RwgG0dYuj2X4DJTtCujmrMMPNyxHclMZdr79ZRkIEUSwLXCbOe CJiIiIqDcOmyEiIiIiGiLY805ERERENEQweCciIiIiGiIYvBMR ERERDREM3omIiIiIhggG70REREREQwSDdyIiIiKiIYLBOxERER HREMHgnYiIiIhoiGDwTkREREQ0RDB4JyIiIiIaIhi8ExEREREN EQzeiYiIiIiGCAbvRERERERDBIN3IiIiIqIhgsH7vaI0IXdRFv TyKhERERHRvfbAE0888an8u1/Wp19E9lh5pdMlG174ZVnop37uSqyYY4QmRlprg6 uAnt2l8MVCO3uQT2tECsXpEMXqwitB1s8qH7/DZSc6iOxoDRkoWB NqaMVSN8hMjfZceBPaWwN4c2fPFy1uLFBWo4XtuMnfXyts dCUXPWoH3t2BnrbzpFkYUbVgJzakX8OpeeRMRERERDUmDDN7NW P3cUuC9l7C9Wt4UQZm3Fj/MVaH6j9uw 4QfiDPC o3lyFbZse1npXDL6UIyVmPTkpFw7ytDWZUD3hgdLPlFKDTfRMX Pt6L0ipxOpp /Fmty4uE/VYEDBytgv3gTWsMUWHJykaVrRMnL21Epp/3qke5LEYxtlXj1J7t71rNMu3g9npmjQ NHz2Hr /JGIiIiIhqShptMpn Xf/cjBZbHRqPpnQrUBeVNEayLVyD29E/w qHW8IYbTXAdB5IL5iA5cBDHL4Y3h1yyw/ZhBWrOe9Eq5XXDD8/pRsRbcpA4fD ORfZaJy3Hd76eCM/bP8Gre twxd8uNgbR6vOgvvowKo454Q5GFkgN3YzZyJ0 FcnaKDR75XNEEg2L7LzZME8yQqf24fKlVpGjbIwFVhHo s/6kTQnH9Pjm ES 0PiRCNjdi4ypojj4q6jyaPEtAVzoLvugqcl8lgP5COg1JqQNS8 rfK7QMX5IVxASca6H5TIbxz0E32VxfB913LcEmOcZ8WBMAvQjH KLuOs8sU2bjWysewbBrKgQ/EXV7Rt4udJdNh4damuAJ1W2k7rqUynVd1LlyihVzdP6uOjHOLU TaiDo0PmBB9mMGxNS50RTaQ0RERESfh0GOeVdDGX0Twb5HtYRy udnRe2cAN4NKaCea5PX iPxjggj45VVZ1vwpUDXYsLOq7xMHAhHblRas/LeNKJ6TLHJTQGsuxLrvr0dBkrxfkHrxn99YBMtYNRCtgSl/Hb7/rFhXygnGTkbWjJkoEvkUzTBgrFakE/Rzi7Fp41rMT9OInNVInlOMjf9WhOwZWZjcOZQodOxk6ORVy6pN OG6Api1itC50hesx8ZnCrrHxIfSZ2PFsxuwWiqzSKOfUYgNPxB lHiOnGZQgzlU5oc5YiuzO65CZn8iDzl0GR6 4XL94Pb6/rjBcNnUysv9pIzatsqDr8KRsFP/bJqzNM0ETLZJMEOvPbkLRnCxkTe68QsBgFuuPSXnNR7peB428n YiIiIg H4PreZ SifypyXhkbg7ycvOQ9agJRt1wNP/1AnxBoDlhGqxTUtFaY8eFG9IBShiWFCJLFyVC3RbsP9r/IHD94m8gP/4C/vz7GnSPmtFixmPZUDS8jo8jeoz7pkTuvxbDdLUEP/nlezheVwv7MRsaHszE0rxHcOmwA02TivCdx0fC8asfYfuHNag7 bcexjxoQm7EQOcYADlZfABLMyElPQvD4Nvxo z7Y633AmAJ8 0kjmt75T2zdU4XauhocrzgIV1wmZier4Dt1EPbLogjSsamA85A 9dA2ev7nhKinFvhO1oXNVHGuH0ZqJhCYbahrl9Ok6dNhfw bt5agJlacCw9MWIVPvw8ETvcYP9Snc846/bIP9oUXITm2GrUY Lmk5npoXhO1/SxEzPR8an9zzLtXDgljYX/tv7DgkynbyuCjbdRgWFsISVYGqBg0KVn8Lxqvv4D9//g6qTtehproCB8 qkZltgOqqo6tsKZn5MD7sQcnmrdj1sQOiBomIiIjoczS4nvf6M ux8bRve N0boWXnRy7AUIDidYWhnmTvnl0ovTgS1o0v48UXXhTLD1Gkq8N ue6 u9D5IvdorZwAVv9sBu7wtTI2ofktXgPUvrxf/L8mCcawPrmNXoZtogEFeFHUOuFV6TB4j9RLroXZXouR86ACZG6 W2s6IQJmTLWxD0oPrdiNHjjxqgaz6J0l69/ 73j Bsr1EqPZx3i9yV0Brk8iR60NishiZyOpre50IAZe5GKOO6e7cH JwDbu5XwT7RieegvDVoUfG0K2o7vga3XHy2kelBdcMAZ011Phs SrOCIaKjqDRaSwwDDWj5MfVIpcI5wvxZE 3j721dtQeetmIiIiIvocDC54D3jhqnd1L8dKse1nZXDHiaB3ip TADdtvtuCl55/DCyEFpe WUZ1Bo1/L6 XqMMC72M pgS9l9vRWmPoFriQuP1INRxRnm9PyooFGroHytAwYLIxQRlUyM CatEUiFYh2N5HY6LWB3 0UjQVZO1t8Mk/Q6Qaag/AG16LcFP b9 ka9v0wgasWtRdnuSuk8h6n tuXClFiWj9pBcWQD9nKSzRJ1Hy/q2llupBoU2PqKPwMj/ pmhcdA62b0Ogj47/mx3yjwhtftGQIyIiIqJ/iMEF730JBNAWjBJBs7zemzIbZj3grXfIG3qSxl0Xz1Ggss/APay84iyiJhWgMGLcet888LfehGf/Vmz9ee9lO0rrAWfTVShH6aGVj ikzNZB4/PCKa/fos4Ln9Z4axkmmaAbIfhWjUWOLhefcVbOkqxzY4P dpLd1vl8AxIgvFC3Q4t7/v2WekesDfHNjWo47k5Q8VUgp4ffEwLuk9Y70RprG9BtUTERER0 T/UIIJ3LQrWbcDaRebu3mnxy7wiG8nDPKgLTR2phDouIrCLM2P50 1bomyqx54hYlz5gtCQXJjmJFLivyQAq gncQ6p3orROiax/2YCVswzdL1SK8xvn6zFSXgPsKD/uh3FZMXINnamU0M5aidWLw0FoYP8ROJUWrFrRfR1KgxVrZunQe PIAbtt/XL8H5fWiDP 0HsvnmEPDTCyLirFxmci39wQtPSigGhFR4plFMN3Ri6ifhRN7P j4Ln sAdvYxpadEqoezD2djXUQ9SDPwFD7V eKuC3sOnIVy5hqsF/fYLA2rmVGA4meXQz9s0NPgEBEREdHnYFDzvCsnW7FqQRYMo5QI SlMzKhRQtLhRvvMNlEnjoEdZsfa7uaHgTgrvFIogvHUHsOs3tn Dv74zVeH6ZDmd//wp2YCU2fcsEtcgn2HsYht BnT/ZiZ599UoYclZg6SwjtLEQ55fyVyDQ7Eb13h0okeaVl9OZlhSjc EY8VFK UrOkzQNbZxklSdlY/fU8GEcpQvlgWBs8H 3EG3td4fHd6aKcjwN7Xt7ea/y9KMOsAuQ9Oh7ah0Qxr5xD1Yfnkfqtgu6573sdq8wowrrFJmjk 5lGwqRpnh1mgqZfnW7/duUTD5mWDC8/9rFTe0J/ 59/vVPDMyzC4IuZ5l shWaMAQnUVhK 2DNt X4Gu2pQ jJWTgfFjRIh/zYtzxw/g/MRVKMAevPSbcIlvyZeIiIiIPleD/sIq9aIswPrnTfD8dDN2D2ZimDuWhaLvZtwyzCfMi6qf74Q0yOU fRymC9edhurAFm9dSw9EREREX3 GLwPSI/lG9YgubkS5YecOOf1Qz0 HdkLspF8/QD 43/Ke87K8iWgX7EBayb4UXnoAJwNXvjVBqTPsSJ7oh8H/uNVlHN2GSIiIqIvBIP3wYgzI3exBenjdNDEKhBs8cFTdwA799i 7hpl8uahhziuEZaoOOo0aiqAfPo8TB3aVwP45v3RLRERERLfH4 J2IiIiIaIj47FNFEhERERHRP1S/Pe8 3z37hBARERER0VeSRqORf929AYP3X6QfgSaq3wnNiYiIvnA/aPy2/IuI6P5y7do1 dfdGzB4f3PGIYyKviFvISIiuj tvfS0/IuI6P5yL0ezcMw7EREREdEQweCdiIiIiGiIYPBORERERDREMHg nIiIiIhoiGLwTEREREQ0RDN6JiIiIiIaIfqeKJCIiIiKi wd73omIiIiIhggG70REREREQwSDdyIiIiKiIYLBdOCVNOAbKS5 NWhZFI2Cuca5RUiIiIi qIN4oVVNcxLV8I6VQe1QloPwn pGqXbS AIhBKI NSA3OVLkZWqgUpaD/rR6KpE6e5yuDrTdJpShI1fN4lce/PD8cfN2HkyvKbJKcbaGW0o3bwD9vCmCGas3JiH4LtbsLNW3nTf ysXaF61Q12zD5j 45G33mglFz1qB9/urDyOKNqyE5tQLeHWvvGkgi9fjZYMLz/2sVN5ARERERF k4SaT6d/l332yPPUslo314uD7b2LnH97DkfpWaNLzkD9NBcexerRCi4Knn 8asGDvL /wh/ VI6K2nYkzFqIRVOAisoGEe5HaHTg8IflKO9aKnBdb4GxowYl79 ajWU4WONcEjcWKzAmXcNjRJG8NMz75FOZ2HMVrZe6eed XGlBVvh HT/nCq mr8XyxGc2H7LgS3nIP6JDxWCZMj8Sh/uParjqMpF38TSyZFIe2i/tx7Iy8cSApmcjX LD/aL28gYiIiIi SAMG754TNpQfqYHb2xoKlNv9HtR Eg/LvERE7T GeuRg4bJYOH/6WxxuCR8TbBVpAnrMNcehaYAgVZmxEivT/fjg53/E6R6ReDPqPBrMXmjBqLMVqLsmb05ajn 2qmDf8UfUhs6nhHZyFnJmmpE27iFc93ngvxFKGWKcW4i0EXVof MCC7McyMDVVh4d8l FplU6mhnFOPmab05CsjUKz14vQ5ghKrQlZ87JgniSOa2mCx98u 7xGkYSVpKtQ1DoNpZg6yQvk8gCvnm9CdSgvLgjnQXXfh5iQr8i eNR6JWhWFqLSakjsdDzS545Hrr91z9SoB5nhEPxiRAP8KBY6KB 1YMyG99a8QiGXVMh Elk8B5Rd1K99D5nZ/B onlQ1 cfl438jHg0n/WIRp0auhmzkTt9KoyGeEQ1N8Lbu3KJiIiI6I4MGLz3SZ B/JRP4fzwONyIRdqsaXio/SiOn 8OzvSWPFhE4Hf0sANyn/Otkgqw9skUNH2wDaURx3a5VouWcbnIn6aWe/n1KPynBXj41E789rjUv6xHwXe/i6VT4nCzuRlRCenIL8hFor8SNZfC WUuXYPphjTkZD2CqDYfhsVNQ aifExVBZGy/CnMTehAy/Vo6NLnwjpLj2uVdnjkougXr8d3l05F3E0fmqPGIT2vALn666is 8YR7/DMLscasR8qcHJg0N9Hc8RCSH83FwlkJaPqoRm60pGD N/OhvXQQ9cOSkTgqHrpRQNMlnwiAg7juCQfvA56rX1LwnoLmv5zB 6OlTgGPivkQcZP7WGliaS2GPMkHj6wzeLVi5qRgLktW4ea0ZwY cmY85CqV5cYr/cdy8F72PUg7o wyOzYRWBe/SnbXD/LQUrv1eEzDHDEbjagphEC3IWZEF/rRJ2 b4QERER0Z37DMG7CJi/IYJRz5 xo0YK367A2ZoggrOlmJc FeaMTGTOycfcpDZUlryJI97bBWsGFD29DCnDmtDUJoK8y240Rf SYd7pyJgD9Y/mYpqiA45Fv4Mlxf8WON46EhoYYn/wOCh6047X/3oGDp tQU12Bo34DFi6xQHGkCg3i1CmZ TDGeVDy36/ivWopzWEcHW7EonkWxNT8Cq 8Xo6a03Yc 8iFuMyFmKapQYWzFZhUhO8siIX9tf/GjkO1qDt5HBXHrsOwsBCWqApUhTNHvnE0Lr/3Y/xiTxVqpTSHLiJhjlWc87AIgqVrD/eK48xBfHzchTpFKuZObINt21s4WCf3ug/mXP2Sz/GXbbA/tAjZqc2whe6NkLQcT80Lwva/pYiZnh8RvHvQfM6Fkg/2wS7qrvaEqLugqJcZCfDaauCVkgz6 sxICh7Hts3bsc9eD59oSF3565/x3t5jqKkTdV5lg0uThYWTYrFfNMKIiIiI6LO5w9lm9MguXoksV GDH7zpfI9VjboYR6o6rcLvccJx2wO32wPf3kTBOnQKlnOpWHhz YtQ3b9jrgH5WFlRvWo2CMvCtSoBI7y92In70O62Zr4Ny/G 7QDgPMSSq4HU4oJhpgkBdd8xG4mnVIzgglCvHV21AZ8eJswCbK J8JT5wfhnMLccHkDUMfpQmsGsx6qCw44Y7rzNiRexZF6H3QGSy hNiM8JW1XkW7lOOC4FMHLU4GdpGfS5BhSA7d1K CdasTw0u40WBV bgrbje2Dr/eKw4D4vrl p7Tqn7lIjfGqNuKMRBnV9QXhqSuT7IvGKvMUxoi4781Y0 RDQaGGWUxARERHRnbuD4F0P67o1sKrs2Paz0u5AbaYVWWM8KPu vrdjxbgnKD5SjZNd2bNlSAf/kXCydKKe7RQBelwuuY XY/drPYLsSD1OuQd7XU CjPahs1kDjtWFXtbwRaihjFNCaC1CwIHKZD217I/wdcjKhzd9rlpdAEDfF/4J9BLSd1NEqKLTpvfIuwPz4m2hsjugJD/hxt3PIDPpcg3GlFCWiXZVeWAD9nKWwRJ9EyfuhfvRexP18ehNe 3LAq4pzJt84CNKjrC6ItcmyU0oKiZ5/H898p6s77US1CkxURERER0Wc2yOBdGltejGxFZc/AXTJKCWVzY4 e7ZBAI9ra1dAMan7zAHxtQaiib51AMswLjwhig21 kbKTE95mwHdyG7b fOsty86P5WSfkbPpKvA3B7b1kffWP1TIqe6Ne30u99slcIzIQv ECHc51/aWilynZyNB6UPLKlu5z/doJv7z7ruTOhDlYjR9vjsj70GDG7hMRERFRfwYRvEuB xpYUHFr4C6pcsOrNWHV3MjBFkoYlmQjOdoDZyiIlj5UVIjcyUp oF6/HxqcLYI4LJQxRpxZipgHw1N06o/vtBXDg47PQzFmH5dO6g34pr9VPWvoZrjM4gf1HcPbhbKxbYe7u jY4zovCpIljuJvNLfrSNUEMXykM0fMR/7/25nNgj6sbnOoCdXX p6INCFTp/mBpZT5qgldfumkKBePmn9B2AwlnJd31PiIiIiL7qBnxh1bTq/8HjybEiANNhem4e8iIWS4IXh4/Y4GjSICN/CZZYxfYcsTw2F kjW1C56zXsDc0uko6Cb1uRprqIve83IHZyJvIfL8TCeTnIecyK eelx8B99B28c8N62dzbBnAOjCEoPnuieeDJ4yQ53RypmLVqCgr xwmWabVPBWleH4xfBkhtILq90vaXZKQWa Br7QVJfdepwj6IH9XBCpsxZhSUFLpmp0HVeBxl1RfCUyXeZh70 nmXtfmHVflmstjSgfWwOFq6wImfeXExRu1Bx8vTA5 pXr3MIwfN2VNh7zoPfoy4azyCQMAvWZQXID93PTMSda0BgnApN nfXyWa5PUn8Fw6fmYdkSa/hZyU5G8GwTVNognPd0fnsiIiKir5ZBfGGVvmhZ31iPjK5u7J68 x 9 iBARERERDQ0M3omIiIiIhog7nCqSiIiIiIi KAzeiYiIiIiGCAbvRERERERDBIN3IiIiIqIhot8XVn2 yM9mEhERERHRndJoNPKvuzdg8P6L9CPQRA080zgRAT9o/Lb8i4iIiCjs2rVr8q 7N2Dw/uaMQxgVfUPeQkT9WXvpafkXERERUdi9HM3CMe9EREREREMEg3c iIiIioiGCwTsRERER0RDB4J2IiIiIaIhg8E5ERERENEQweCciI iIiGiL6nSqSiIiIiIjuH x5JyIiIiIaIhi8ExERERENEQzeiYiIiIiGCAbvPRiRvSRb/L8sKQsFOSYo5dVBUZqQuygLenmViIiIiOheufsXVpUG5C5fiqx UDVTSetCPRlclSneXwxUIpehFCUPOCiydZYQmRloPwu89i8oPd qG8jwP0M5ejYO4U6GIVofVgSyPOVu9DyT4n/KEt91IB1r9sgOu5rSgVa4ZvbETxVD/KXngV5eEEA8tZixcXqOF4bTN21svbiIiIiIjugbsM3rUo O4zsHRUYOfvS FsFqG51oKCVYVIDxzAf/xPOXqH49pF6/HMjCAq/m8HSutE K3UwrJ4FQrNbTjwHyJIjjhAOacY3xeB8Ml3d2LfMY8I1tXQzch GwRQlbK/thlNOd /0DN6JiIiIiO4ndzlsxgLDOB qXw8H7pKAtxK7y88iOErfPfwkgmWiDr7jb4QDd0nAi8pdB3C2P R76SeFNnbKm6oH6A9gdCtwlfniOlWJbj8BdCe1kEdAvKUThklx Yxqnl7bJJ2SicK0oiNRLyCpEdcQ6l1oTsRdJxBchO7XWcpPNYm XFu Ph jxtjgXWBRTRrunWnL0TuDJ1ogkToSi81THJDaQrzxPodjdUhIi Iioq CuwzeRVDdqkZ8Rs9IU584EoobgT6HtXiaA1CLgLXHEUl6jIxuQ C6vC7ztQSh0Oj7GT9uwcpNP8S6xWZooyHSpqNg3UasXxxxhMGM rBnzsf776zBfNAZ0mvBm/eL1 OH3VsAyVoTS0VqYl23AplVaRIV3h0nHmg3yirSahazctdiwrgB mrQJqrRF5T23Cpm Z5RTC2MnifJOhk1ctqzbhh3J6RGuQvmA9Nj5T0H1NofTZWPHsB qyekwy1SKOfUYgNP1iPgjFyGiIiIiIiYbjJZPp3 fdncAXO1gTkLFiKeelTYc7IROacfMxNakNlyZs44g3K6bpdqWt Fwlwrls6djqnmDGTOmIP8eePRdqwEb1Z4EXnEFV8Hkh/Ng/Wx6UgbPwoxuA7fFT/a5f1S46H5nAslH yD/XQdak9U4GjQiEUzEuC11cArJUnJRL5xJDx7foytb38MxwWxbVI RvrPoYdT86kfY/mEN6k7bceyjBqhz8pGmboF7/zGEhqtLx2p82H80PHg9JTMfRs1lvL/5F3jnL7Woqa7AwUsJyLYaoT4sjpEKn2BGTirgPGQXtSNK Dc3XCWl2HeiNnSeimPtMFozkdBkQ02jnD5dhw77a9i8vRw1obJ UYHjaImTqfTh4QsqFiIiIiOiue971mJshAteOq3C73HCcdsDt9 sD395EwTp3S5ywt uwMGOOAq fPwi3SO9zn4Gm6iZGpJkzpfcB5G7b96CVseb9ShOk6WBavxaaX nseGFd099 7z7tCQGMNEQ2jRXWqET63p2Vvvc8JW1T2Y3mDWQ 2uRMl5eUOIG6W2s7eM0e/NV29DZWSiWgc8rSOh7TXkp4son1sa2mMIl8 Q6EFjsxqayAIGPah V1xHlwDK3I1QxnX23xMRERER3W3wPtOKrDEelP3XVux4twTlB8 pRsms7tmypgH9yLpZOlNN1yYJ1Vjw8e3 Mrb8vQYlIX/7ubmz/6RZUtJqQ 7XuISrdAvBWlWP3b17FlldewEuvVeOmuRBrcqR9elif3oQXN6x CwYICeUnuOaZcEvDDJf UqKNVCLb3Main1jfgDDZt/sicBqafLxocL2zAqkWd5StAcu8CtrfBJ/8kIiIiIrqduwveRymhbG7s2RMtCTSirV0NTZK83kUDpdKPxohe 8LAAGluCUPfoju5bwFWCqoYgNIkmYEo2MrQelLyyBVt/vjW8/HrgKSQ9zX4oR l7vFQqUWbrRAnvJROyLaKx8u4r2NJZvp9v63q5l4iIiIjoTtxd 8F7lhldrwqq5kUG3EoYl2UiO9sD5sbRqQu6SXJhC41wq4fZqYV qV3WNYi9JQiOyJCnicFfIWiRYFT29A8SJzj550KW3GBMBb7whv UKhEgyD8EyJl1pOmW4Ly3rx7K FSW7BqRXfeSoMVa6Z/HsNUFFCN6B4PpJ5ZBBNfRCUiIiKiz DuXlhtqYOjSYOM/CVYYs1DXo5YHpuL9JEtqNz1GvZeCgKPFuApaxqiPdILmq2oO90 EzaP5WLLEGk6fm4e5j2rQcmw3Xtt7KeKF1VZc8CmRMisPS5cUI G9ejkgrjpkaC /HO/G7gz4EG88gkDAL1mUFyBf55OVmIu5cAwLjVGi6zUunIUE3jv81 iNRZi7Ds8XzkzBNlmKqGe69oEKTFwdfPC6sa334cOxNalSXAPM 8InDkI 2VpNfKFVS/OtMVjlnUFCvLC15qpcaOhVQfVVTmfXi 4dumr3ERERET0lXb3X1glIiIiIqJ/iLucbYaIiIiIiP5RGLwTEREREQ0RDN6JiIiIiIYIBu9ERERERE NEvy s nz8dBARERER0d3QaO7dl4QGDN5/kX4Emqh2ectXyw8avy3/IiIiIiL6bK5duyb/unsDBu9vzjiEUdE35C1fLWsvPS3/IiIiIiL6bO7laBaOeSciIiIiGiIYvBMRERERDREM3omIiIiIhg gG70REREREQwSDdyIiIiKiIYLBOxERERHRENHvVJFERERERHT/YM87EREREdEQweCdiIiIiGiIYPBORERERDREfHWC90nZKJxrlF fugTEWWBdYoJVXb0c/swC5k5XyGhERERHRZ3dvXlidUoSNXzdBLa9288Pxx83YeVJeFU xPbkTRpFtThlyy4YVflskrEhOKni2CqVfyYEsjzp20YfcHdnGG QVq8Hi8bXHjuZ6XyhruUvhrPPw7seXk77PKmWxlQtLEYpmtl4r rK5W39sWLtCwa4XnwVkbVARERERCQZbjKZ/l3 /dk1OnD4w3KUdy0VuK63wNhRg5J369EsJ5Popucjxfc2XvzpmxH pHVA/Ohuq82 jwtkqp5TokPFYCnwlL L//b/OtFWov6mGaXYBZo 7iMOOJjntAFIyka/xYf/RennDXUowIycVcB6y44q86VY OA7vR3lVg7w ECOyFoxC8/5juEelJCIiIqIvkc9l2Iwyowjzx3lQ8r lcMvb pVegHSNG9V7vfKG/vjhOVaKV094oEkywyBvFWeFdnI2CpYUonBJLizjbtO7H0mphSV PSl IgjnGPv5yIMQZkb0onCY3QyvO0psauhm5of2FeRZoeyUwzi1E9 iR55U51Dc1RwzinAFZx/pA4XUS5Tb3OKa5pgRWWMaJk4yzI7ayP3gUjIiIioiHn3vS8R0o qwNonU9D0wTaUng/KG7tdOXEQB09E9lUrYV22FGMuluC31b170RNgnmcEzhyE/bK8SaafmgNLzAX88ZjUR23Byk3FWJCsxs1rzQg NBlzFuZjqsqFY2fkfv9ePe9SA2PDvyzBxBFt8DVHIX7qXBTkpy GqoQqua6Ek0M9fitzMToYAt8wVikWOZjfkYcrhypQ1Oo530kND NykJUUhcD1aCRMzYI114SY2mOobwnnkbl0DdKwX5QjvN6/FGTma Dr7HlPmY9VuQYYZolgPCEaf29zw5e6Et97IlPUTAC 1hgkZuRg4Sw9rlXa4QlVdwrmfzMfxvGZyJmZiKg2P6IT0pE1Pw mGAeO1Uf ZYOIiIiIhpJ7HLwbUPT0MqQMa0JT23AELrvRdEPedTtjCrB0vg rO/3sPdXLA200K3k0YqVBDO8EIY2p4seSuQF5iM2x/eFMOtD1oPudCyQf7YD9dh9oTFTgaNGLRjAR4bTUI9edHBu/KXBT/63Q0l/wntu6pQm1dDY5XHMX1CXkoyNCgpqIOrZOK8J3HR8Lxqx9h 4c1qDttx7GPGtChiUFTvRvNUvCerkOH/TVs3l6OmtD CgxPW4RMva rgZKSmQ N7zMG76FzJCF4fBt tF1cW70PzdeuoGHfe/hTpSiTKHfVRy7EZS5EWqw4R/ggUWdm6P5ux2v/tR3lJ2thP2ZDxXCpPibA1 8wHyIiIiK6n93jYTMeHNi1Ddv2OuAflYWVG9ajYIy86zayFqdD 3VCJskFHlArxvwBuRsXDPNvSNYzFfd4dGgZjmGgILbpLjfCpNd DL 3uYZYSu SRKqwLyBkkAlW/Z4dEakS3KbDDroXZXouS8vDvEDdsHtu6hQEEPqt NHBgUQJm7Eco4nbx D/Q xxU33KLY6nHh6zRMVMDXHMBIrVlOIAnCU1PSY8hSYJ8bjSPUuI clIyIiIqJ/sHscvAfgdbngOlaO3a/9DLYr8TDldo9Kv4XSCvOEmzj7kU0ceTtBXD1dgpJ3O5fd2P7LL Xjlxwfgn5SLpROlNHpYn96EFzesQsGCAnlJ7nsMu0QlGgDtoqz yapeAF/5WFdRjRXAcrUKwfYC5bNrb4JN/fm56nUMa7rPx eex9uud11mAdK1C3tspiLbPvWBERERE9I/2Oc7zHoCvLQhV9O1fHDV zQyd146yWnnDnQj40RbUQCsF71OykaH1oOSVLdj6863h5dfO20 8j6fEjoNEhS17tMikVuuhGuKsBZ9NVKEfpB5zH/R8tb6YZweM/xuafytcpFtulW98tICIiIqIvn3sSvGsXr8fGpwtgjpM3COrUQs w0iDi5zg4oTchdkgtTjwlPspCdqoL7WOmtPeADUsKQY4FO6YX7 uLxJoYKyK381sp403T7wri5HpU P3OJcGDqPicvCyiVGoK4C0ozsgf1H4FRasGqFuasHX2nIRfH3i pE7St7wBVFEx8u/pDJJ9cyZZIiIiIi Cu5J8O7dXw77TSOWbnwZL7/wIl588WVsesoEHNuF3x0RCaZmYO6sLJhDQ1zClPPN0N84C5u0v 19KGL8m8pTy7Vxeeh5rZinheGsbSqSx8id3YV tCnk/6EyzARnN7n4aBW6U/u9OOGKyUPycfMyzVsRfLMXW38mfXApUYvvvynBVvxSbXgqnef6 fs6CoPYCKQU4t/3koLSmHP7VYvs4X8cMV8fBcvP2gIyIiIiL68rg3X1ilgU0swOo Fhr7H4be4UPpGKVzyKhERERFRXxi8ExERERENEZ/jC6tERERERHQvMXgnIiIiIhoiGLwTEREREQ0R/Y559/n4pR8iIiIioruh0WjkX3dvwOD9F lHoIlql7d8fn7Q G35FxERERHRl8e1a9fkX3dvwOD9zRmHMCr6hrzl87P20tPyLyI iIiKiL497OZqFY96JiIiIiIYIBu9EREREREMEg3ciIiIioiGCw TsRERER0RDB4J2IiIiIaIhg8E5ERERENET0O1UkERERERHdP9j zTkREREQ0RDB4JyIiIiIaIhi8ExERERENEQzeiYiIiIiGCAbvR ERERERDBIN3IiIiIqIhgsE7EREREdEQweCdiIiIiGiIYPBORER ERDREMHgnIiIiIhoiGLwTEREREQ0RDN6JiIiIiIYIBu9ERERER EMEg3ciIiIioiGCwTsRERER0ZAA/P9hMssKcsFlfgAAAABJRU5ErkJggg==

Albannach
03-07-2025, 06:05 PM
Target: Albannach_scaled
Distance: 3.0278% / 0.03027756
81.6 Irish
13.2 Basque_Gipuzkoa_Southwest
3.0 Latvian
1.2 Georgian_Megr
1.0 Sardinian

R1b-L51
03-07-2025, 09:47 PM
just for fun, Model yourself with the individuals who score most of each main eurasian ancestral component


Sardinian:HGDP01066,0.119514,0.168578,0.026021,-0.050065,0.066166,-0.020638,-0.002115,0.007384,0.049086,0.085286,-0.008119,0.018883,-0.028097,-0.015001,-0.013708,-0.010872,0.009518,0.005068,0.00729,-0.02151,-0.004991,-0.004081,-0.010353,-0.0194,0.000958
Irish:513,0.132035,0.122879,0.059962,0.059755,0.02 8928,0.02259,0.00423,0.004615,0.0045,-0.002005,-0.000974,0.002248,-0.00996,-0.01734,0.028908,0.008618,-0.002608,0.006461,0.004022,0,0.007986,0.003091,0.0 10846,0.017593,0.00479
Basque_Gipuzkoa_Southwest:6639,0.130897,0.145221,0 .06675,0.016473,0.055087,0.005857,-0.00047,0.006,0.03211,0.049933,-0.011692,0.007943,-0.019623,-0.024222,0.019544,0.009149,-0.005346,0.00266,0.002263,0.002501,0.01672,0.00371 ,-0.018734,-0.017472,-0.003952
Latvian:latvian54A2,0.135449,0.119832,0.096166,0.0 96254,0.04924,0.038487,0.014101,0.016153,-0.002045,-0.040456,-0.005684,-0.018434,0.024975,0.029314,-0.010586,0.016706,0.024121,-0.001774,-0.002137,0.008879,-0.000749,-0.001731,0.01368,-0.004217,0.000359
Yemenite_Mahra:Y345,0.046667,0.133034,-0.068259,-0.118542,-0.000308,-0.068049,-0.013631,-0.009923,0.060539,-0.001822,0.021922,-0.035069,0.057383,0.008945,0.012486,0.022938,-0.026468,0.002914,-0.004651,0.029264,0.0141,0.015209,-0.007148,-0.00253,-0.000958
Berber_MAR_TIZ:BerT8,-0.062603,0.140143,-0.004903,-0.094316,0.036007,-0.044901,-0.040422,0.010846,0.094899,0.039727,0.005521,-0.007943,0.021407,-0.013487,0.027144,-0.016441,-0.002999,-0.031165,-0.068003,0.010755,-0.026204,-0.06566,0.030812,-0.020244,0.012693
Georgian_Megr:SMG5,0.103579,0.131003,-0.060716,-0.051034,-0.042469,-0.014781,0.012691,-0.003692,-0.066266,-0.021139,-0.000812,0.014537,-0.034043,0.004404,-0.004207,-0.017767,0.028815,-0.007981,-0.017598,0.022011,0.012104,0.000742,0.000616,-0.00253,-0.006347
Balochi_Iran:9AQ100,0.071709,0.055854,-0.105971,0.026486,-0.071398,0.026216,0.006815,0.001385,-0.030679,-0.030433,-0.003897,-0.004346,0.006392,-0.008945,0.017236,0.027313,-0.016298,0.007855,0.006536,-0.034141,0.00287,-0.016446,-0.00912,-0.023979,0.01916
Nanai:AMU-636,0.026179,-0.446833,0.081458,-0.048773,-0.056934,-0.043228,0.020916,0.028614,0.003068,0.013668,-0.038811,-0.003597,-0.003865,-0.00234,-0.006786,-0.008618,0.004303,0.007981,0.014455,0.014382,0.009 483,-0.030048,-0.018364,0.009519,0.000838
Saami:saami11,0.110408,-0.052808,0.113136,0.078166,-0.015387,0.008088,0.008695,0.014076,0.005727,-0.030433,0.031991,-0.003147,0.020069,-0.026974,-0.003122,0.001989,0.004042,-0.00038,-0.008547,-0.002501,0.017968,0.001978,0,0.004458,0.00467






Target: Irish:513
Distance: 3.6962% / 0.03696160
56.6 Pontic-Caspian_Steppe_Bronze_Age_Pastoralist
30.2 Aegean_Neolithic_Farmer
13.2 West_European_Hunter-Gatherer

Target: Sardinian:HGDP01066
Distance: 3.3675% / 0.03367458
83.6 Aegean_Neolithic_Farmer
12.8 West_European_Hunter-Gatherer
3.0 Pontic-Caspian_Steppe_Bronze_Age_Pastoralist
0.4 Indian_Hunter-Gatherer*
0.2 Lithic_Maghreb


Target: Basque_Gipuzkoa_Southwest:6639
Distance: 3.8718% / 0.03871795
53.2 Aegean_Neolithic_Farmer
24.6 Pontic-Caspian_Steppe_Bronze_Age_Pastoralist
22.2 West_European_Hunter-Gatherer


Target: Latvian:latvian54A2
Distance: 6.7129% / 0.06712942
46.8 Pontic-Caspian_Steppe_Bronze_Age_Pastoralist
33.0 Baltic_Hunter-Gatherer
20.2 Aegean_Neolithic_Farmer


Target: Yemenite_Mahra:Y345
Distance: 4.1744% / 0.04174398
62.8 Natufian
16.2 Zagrosian_Neolithic_Farmer
13.4 Levantine_Neolithic_Farmer
7.0 Armenian_Highlands_Bronze_Age
0.6 Papuan


Target: Berber_MAR_TIZ:BerT8
Distance: 2.4342% / 0.02434231
49.6 Lithic_Maghreb
38.2 Aegean_Neolithic_Farmer
6.8 Levantine_Neolithic_Farmer
4.0 Bantu_Iron_Age_Farmer
1.2 West_European_Hunter-Gatherer
0.2 Morocco_Late_Neolithic


Target: Georgian_Megr:SMG5
Distance: 1.7951% / 0.01795132
53.2 Caucasian_Hunter-Gatherer
25.6 Aegean_Neolithic_Farmer
14.2 Armenian_Highlands_Bronze_Age
6.8 Levantine_Neolithic_Farmer
0.2 Papuan


Target: Balochi_Iran:9AQ100
Distance: 1.9959% / 0.01995911
63.0 Zagrosian_Neolithic_Farmer
12.2 Aegean_Neolithic_Farmer
8.4 Pontic-Caspian_Steppe_Bronze_Age_Pastoralist
8.2 Indian_Hunter-Gatherer*
4.6 East_European_Hunter-Gatherer
1.8 West_European_Hunter-Gatherer
1.0 Natufian
0.6 Indochinese_Neolithic_Farmer
0.2 Levantine_Neolithic_Farmer


Target: Nanai:AMU-636
Distance: 3.4956% / 0.03495575
99.2 Ancient_Northeast_Asian
0.8 Caucasian_Hunter-Gatherer


Target: Saami:saami11
Distance: 5.9278% / 0.05927821
55.8 East_European_Hunter-Gatherer
24.2 Ancient_Northeast_Asian
17.8 Aegean_Neolithic_Farmer
2.0 Pontic-Caspian_Steppe_Bronze_Age_Pastoralist
0.2 Old_Beringian

After doing the TRAIT PREDICTOR analysis by AndreiDNA (who for me is a misunderstood genius), he gave me a very close distance to the Corded_Ware_Gyvakarai (similar to the current Iranian Sarmatians of the Samara Oblast, i.e. Indo-Europeans).

https://i.postimg.cc/YjkD1F52/Screenshot-2025-03-07-at-21-54-53-Ethnic-calculator-results.png (https://postimg.cc/YjkD1F52)

Taking the Corded_Ware_Gyvakarai sample

https://dnagenics.com/ancestry/sample/view/profile/id/Gyvakarai1_10bp

Genetic Profile


English 39.54%
Finnish 11.42%
Northwestern European 2.93%
Scandinavian 1.48%
Eastern European 29.09%
Pakistan 12.33%
Native American 3.21%

Gyvakarai1_10bp,0.12244312,0.0867149,0.05225324,0. 06092556,0.01237556,0.0244885,0.00791422,0.0106243 6,-0.00737058,-0.02484582,0.00043062,-0.0020716,0.00778678,-0.00232034,0.0023492,-0.00268724,-0.00679982,-0.00176806,-0.00297244,-0.00478052,0.00155092,0.00128408,-0.0059949,0.00726656,-0.0019295

Target: ROBERTOFERN_scaled
Distance: 0.0189% / 0.01889051
29.7 Basque_Gipuzkoa_Southwest
21.7 Sardinian
19.0 Gyvakarai1_10bp
11.5 Berber_MAR_TIZ
9.9 Irish
8.1 Georgian_Megr
0.1 Latvian

Distance to: ROBERTOFERN_scaled
0.06832914 Basque_Gipuzkoa_Southwest:6639
0.10022816 Irish:513
0.10352756 Sardinian:HGDP01066
0.11910383 Gyvakarai1_10bp
0.17002424 Latvian:latvian54A2
0.18115224 Georgian_Megr:SMG5
0.21763609 Yemenite_Mahra:Y345
0.22989298 Balochi_Iran:9AQ100
0.24150250 Berber_MAR_TIZ:BerT8
0.24662123 Saami:saami11
0.60883287 Nanai:AMU-636


Now I see more sense in it, because adding up I have 66.8 in total of samples that are not Mediterranean for my phenotype despite having quite a lot of Sicilian and Berber.

Gallop
03-08-2025, 12:26 AM
Target: Gallop_scaled
Distance: 1.7945% / 0.01794530
44.8 Basque_Gipuzkoa_Southwest
18.2 Irish
13.0 Sardinian
9.8 Berber_MAR_TIZ
9.8 Georgian_Megr
4.4 Latvian

Target: Father_scaled
Distance: 2.0830% / 0.02082993
39.0 Basque_Gipuzkoa_Southwest
18.0 Sardinian
14.8 Latvian
11.6 Berber_MAR_TIZ
9.4 Georgian_Megr
7.2 Irish

Target: brother_scaled
Distance: 1.7863% / 0.01786333
38.2 Basque_Gipuzkoa_Southwest
22.2 Sardinian
11.4 Berber_MAR_TIZ
10.6 Latvian
8.8 Georgian_Megr
8.8 Irish

Gannicus
03-08-2025, 12:51 AM
Distance to: Gannicus_MergedFile_officialDavidski_scaled
0.04280643 Irish:513
0.06889776 Basque_Gipuzkoa_Southwest:6639
0.12968140 Latvian:latvian54A2
0.15350746 Sardinian:HGDP01066
0.20348592 Georgian_Megr:SMG5
0.22595332 Saami:saami11
0.24011732 Balochi_Iran:9AQ100
0.26073956 Yemenite_Mahra:Y345
0.29766276 Berber_MAR_TIZ:BerT8
0.61648983 Nanai:AMU-636



Target: Gannicus_MergedFile_officialDavidski_scaled
Distance: 0.0233% / 0.02325251
62.2 Irish
32.1 Basque_Gipuzkoa_Southwest
3.8 Georgian_Megr
1.9 Yemenite_Mahra

keterpier
03-08-2025, 02:09 AM
Distance to: keterpier_scaled
0.09997872 Georgian_Megr:SMG5
0.15458280 Balochi_Iran:9AQ100
0.15807631 Irish:513
0.16583170 Basque_Gipuzkoa_Southwest:6639
0.16602086 Sardinian:HGDP01066
0.18011377 Yemenite_Mahra:Y345
0.22026596 Latvian:latvian54A2
0.25202934 Saami:saami11
0.26076759 Berber_MAR_TIZ:BerT8
0.57504450 Nanai:AMU-636

Dick
03-08-2025, 03:24 AM
Target: _scaled
Distance: 2.7549% / 0.02754938 | ADC: 0.25x RC
43.0 Latvian
23.0 Sardinian
17.4 Georgian_Megr
10.2 Irish
6.4 Yemenite_Mahra


Distance to: _scaled
0.05671965 44.00% Sardinian:HGDP01066 + 56.00% Latvian:latvian54A2
0.06106442 81.40% Irish:513 + 18.60% Yemenite_Mahra:Y345
0.06190210 76.20% Irish:513 + 23.80% Georgian_Megr:SMG5
0.06322999 26.80% Sardinian:HGDP01066 + 73.20% Irish:513
0.06359821 60.80% Latvian:latvian54A2 + 39.20% Georgian_Megr:SMG5

noricum
03-08-2025, 05:48 AM
Target: G25noricum_scaled
Distance: 3.5034% / 0.03503438
40.6 Latvian
26.8 Irish
25.6 Sardinian
4.6 Balochi_Iran
1.4 Georgian_Megr
1.0 Yemenite_Mahra


Target: G25noricum_scaled
Distance: 3.7726% / 0.03772572 | ADC: 0.5x RC
37.4 Latvian
36.0 Irish
26.6 Sardinian

RyoHazuki
03-08-2025, 02:39 PM
Target: G25K13SimRyoHazuki
Distance: 1.9386% / 0.01938576
49.2 Irish
23.8 Basque_Gipuzkoa_Southwest
13.4 Latvian
10.2 Sardinian
3.0 Georgian_Megr
0.4 Yemenite_Mahra

Target: Ryo_scaled
Distance: 4.1899% / 0.04189910
70.0 Irish
20.0 Basque_Gipuzkoa_Southwest
4.6 Yemenite_Mahra
3.8 Sardinian
1.6 Latvian

cass
03-08-2025, 03:56 PM
Target: cass
Distance: 2.1400% / 0.02140015
49.4 Latvian
27.6 Irish
12.0 Sardinian
4.2 Basque_Gipuzkoa_Southwest
4.2 Georgian_Megr
1.8 Yemenite_Mahra
0.8 Balochi_Iran

It looks kosher

Target: Poland_Globular_Amphora:RISE1164__BC_2513__Cov_57. 18%
Distance: 5.2581% / 0.05258060
66.8 Sardinian
25.4 Basque_Gipuzkoa_Southwest
7.8 Latvian

Target: Poland_CordedWare_1.SG:N49_noUDG.SG__BC_2425__Cov_ 79.78%
Distance: 3.5541% / 0.03554130
57.8 Latvian
23.0 Irish
13.6 Basque_Gipuzkoa_Southwest
4.2 Balochi_Iran
1.4 Saami

Pedro Ruben
03-08-2025, 08:56 PM
Target: Pedro_scaled
Distance: 2.7724% / 0.02772416
41.8 Irish
18.2 Sardinian
15.2 Berber_MAR_TIZ
12.8 Basque_Gipuzkoa_Southwest
4.6 Georgian_Megr
4.6 Yemenite_Mahra
2.8 Latvian

Target: Dad_scaled
Distance: 2.7368% / 0.02736778
31.8 Irish
22.2 Sardinian
19.2 Berber_MAR_TIZ
13.4 Basque_Gipuzkoa_Southwest
6.8 Latvian
2.6 Georgian_Megr
2.6 Yemenite_Mahra
1.4 Saami

Target: Mom_scaled
Distance: 2.4150% / 0.02415026
42.6 Irish
21.6 Sardinian
17.8 Basque_Gipuzkoa_Southwest
12.4 Berber_MAR_TIZ
4.0 Georgian_Megr
1.6 Yemenite_Mahra

Figaro
03-13-2025, 08:38 PM
Target: TonislavFather
Distance: 2.8673% / 0.02867335
56.2 Irish
22.0 Latvian
12.2 Sardinian
3.6 Basque_Gipuzkoa_Southwest
3.4 Yemenite_Mahra
2.6 Georgian_Megr

Target: TonislavMother
Distance: 2.3010% / 0.02301019
45.8 Latvian
27.4 Irish
15.8 Sardinian
5.6 Georgian_Megr
3.6 Yemenite_Mahra
1.2 Saami
0.6 Balochi_Iran

#Oda#
03-13-2025, 09:05 PM
Target: #Oda#_simulated_ancestry_scaled
Distance: 1.9110% / 0.01910960
59.4 Irish
18.6 Basque_Gipuzkoa_Southwest
16.2 Latvian
3.2 Sardinian
2.6 Georgian_Megr

Target: #Oda#_Davidski-coords_scaled
Distance: 2.1109% / 0.02110871
50.6 Irish
21.8 Basque_Gipuzkoa_Southwest
21.4 Latvian
5.6 Georgian_Megr
0.6 Sardinian

unmoggable
03-17-2025, 01:27 AM
Target: unmoggable
Distance: 1.7612% / 0.01761238
60.2 Irish
15.2 Basque_Gipuzkoa_Southwest
11.2 Latvian
7.8 Georgian_Megr
5.0 Sardinian
0.6 Yemenite_Mahra

JerryS.
03-18-2025, 04:11 PM
Target: JerryS_scaled
Distance: 2.1319% / 0.02131863
68.6 Irish
15.4 Sardinian
10.4 Latvian
5.4 Georgian_Megr
0.2 Berber_MAR_TIZ