They are the most accurate for me. Easy to interpret too.
Printable View
Eurogenes K13 seems very accurate. I also liked the hunter/gatherer to find my %
Eurogenes K13 and K15 are the best ones for Europeans. The EUtest is pretty fucking accurate as well.
I like Eurognes K15 and EU test.
EUtest and Jtest.
I would have to say Eurogenes K13 and 15. Eurogenes EU test and MDLP K23 are quite good too.
Dodecad World 9
& Eurogenes K13
but more Dodecad World9
Eurogenes K15, K13, AncestryDNA, ftdna myorigins.
MDPL and EUtest
@nilotik
HAHAHAHA
Everything. Combine Everything Into One And Create A Plotting Map :D
Eurogenes k13, k15 and ancestry. 23 and me is pretty good as far as detecting the last 500 years back but not any farther
Sent from my iPhone using Tapatalk
MDLP 23b, MDLP K16 Modern, Puntdnal K15 and Dodecan World9 are the best in my humble opinión, but I like all them.
puntDNAL calcs
MDLP K16 modern.
New, up-to-date, above average quality, precise.
puntDNAL Africa
MDLP k23b 4 squared method, not single square method , seems to nail my ethnicity more or less :
1 CEU_ + Irish_ + Irish_ + North_German_ @ 1.867592
The Central European is really like Southern German/French (Alsace-Lorraine) and the North German should probably be British Saxon(England)+Scandinavian ( via Scotland)but these calculators aren't perfect but that is close enough to being perfect. It is good I know my ancestry so I can interpret it correctly.
So a perfect calculator would say :
Germanic/French/AlsaceLorraine(CEU)-Irish+Irish+Saxon/Scandinavian
Eurogenes K15
Quote:
Originally Posted by TEUTORIGOS
MDLP k16 modern is not that bad either :
1 French_France + Irish_Cork_Kerry + Irish_Cork_Kerry + Scottish_Argyll_bute @ 2.033016
Mine is spot on :rolleyes:
Using 2 populations approximation:
1 50% Norwegian_Norwegia +50% Greek_Macedonia @ 2.891585
Using 3 populations approximation:
1 50% Norwegian_Norwegia +25% Serbian_Bosnia-Herzegovina +25% Turk_Trabzon @ 2.205396
Using 4 populations approximation:
1 Icelandic_Iceland + Norwegian_Norwegia + Serbian_Bosnia-Herzegovina + Turk_Trabzon @ 2.251399
I read on Davidski's blog that k15 is simply EUTEST + Amerindian samples and that K13 has added Asian samples. Since, I don't have Amerindian ancestry I don't find K15 that accurate :
Using 4 populations approximation:
++++++++++++++++++++++++++++++++++++++++++++++++++ +++++++++++++
1 East_German + Orcadian + Orcadian + Orcadian @ 2.377470
2 East_German + Orcadian + Orcadian + Southwest_English @ 2.603018
3 East_German + Orcadian + Orcadian + Southeast_English @ 2.744400
4 East_German + Orcadian + Orcadian + West_Scottish @ 2.762994
5 Norwegian + Orcadian + South_Dutch + Southwest_English @ 2.777089
6 North_Swedish + Orcadian + Southwest_English + Southwest_English @ 2.829644
7 East_German + Irish + Orcadian + Orcadian @ 2.862946
8 Orcadian + South_Dutch + Southwest_English + West_Norwegian @ 2.889061
9 Norwegian + Orcadian + Orcadian + South_Dutch @ 2.926053
10 North_German + Orcadian + Southwest_English + Southwest_English @ 2.937662
11 North_Dutch + Orcadian + Orcadian + South_Dutch @ 2.940629
12 North_German + Southwest_English + Southwest_English + West_Norwegian @ 2.952824
13 Norwegian + Orcadian + Southwest_English + Southwest_English @ 2.953074
14 Norwegian + Orcadian + South_Dutch + Southeast_English @ 2.953712
15 Irish + Norwegian + Orcadian + South_Dutch @ 2.984510
16 Orcadian + South_Dutch + Southwest_English + Swedish @ 2.992187
17 North_German + Orcadian + Orcadian + South_Dutch @ 2.993653
18 North_German + Norwegian + Southwest_English + Southwest_English @ 3.000836
19 Norwegian + Southeast_English + Southwest_English + Southwest_English @ 3.004843
20 Norwegian + Southwest_English + Southwest_English + West_Scottish @ 3.006466
V3 is the best
puntDNAL k15
putndnal k15
eurogenes k13
eurasia k9 asi
we wuz scythian n shiet calculator - https://www.theapricity.com/forum/sh...ulator-results
dodecad v3
I think Dodecad might be better for southern Euros but not sure. Different calculators will be more accurate for different people. That being said V3 is not bad, per se, for me, it has my number one closest single population probably correct :
Using 1 population approximation:
1 Argyll_1000 Genomes @ 2.249808 (Argyll is is in Scotland)
2 N._European_Xing @ 2.591351
3 Orkney_1000 Genomes @ 3.121784
4 Orcadian_HGDP @ 3.307065
5 CEU_HapMap @ 4.024599
It screws up on the four population mode because I have no Slovenian or anything close to it ancestry. Otherwise , besides that, it is pretty correct :
1 Cornwall_1000 Genomes + Dutch_Dodecad + Argyll_1000 Genomes + Slovenian_Xing @ 1.836259
2 British_Dodecad + Dutch_Dodecad + Argyll_1000 Genomes + Slovenian_Xing @ 1.840761
3 British_Isles_Dodecad + Dutch_Dodecad + Argyll_1000 Genomes + Slovenian_Xing @ 1.857442
4 Mixed_Germanic_Dodecad + Argyll_1000 Genomes + Argyll_1000 Genomes + N._European_Xing @ 1.886804
5 Mixed_Germanic_Dodecad + Argyll_1000 Genomes + N._European_Xing + N._European_Xing @ 1.902254
6 Cornwall_1000 Genomes + Mixed_Germanic_Dodecad + Argyll_1000 Genomes + Slovenian_Xing @ 1.908361
7 British_Dodecad + Mixed_Germanic_Dodecad + Argyll_1000 Genomes + Slovenian_Xing @ 1.908643
8 Kent_1000 Genomes + Kent_1000 Genomes + Argyll_1000 Genomes + Slovenian_Xing @ 1.923346
9 Dutch_Dodecad + Irish_Dodecad + Argyll_1000 Genomes + Slovenian_Xing @ 1.935454
10 Dutch_Dodecad + Kent_1000 Genomes + Argyll_1000 Genomes + Slovenian_Xing @ 1.938373
11 British_Dodecad + Mixed_Germanic_Dodecad + Orkney_1000 Genomes + Slovenian_Xing @ 1.941690
12 Kent_1000 Genomes + Kent_1000 Genomes + N._European_Xing + Slovenian_Xing @ 1.962639
13 Irish_Dodecad + Mixed_Germanic_Dodecad + Argyll_1000 Genomes + Slovenian_Xing @ 1.963661
14 Cornwall_1000 Genomes + Mixed_Germanic_Dodecad + Orkney_1000 Genomes + Slovenian_Xing @ 1.965882
15 British_Isles_Dodecad + Mixed_Germanic_Dodecad + Argyll_1000 Genomes + Slovenian_Xing @ 1.966242
16 British_Dodecad + Kent_1000 Genomes + Argyll_1000 Genomes + Slovenian_Xing @ 1.968178
17 CEU_HapMap + Irish_Dodecad + Mixed_Germanic_Dodecad + Slovenian_Xing @ 1.977643
18 British_Isles_Dodecad + Kent_1000 Genomes + Argyll_1000 Genomes + Slovenian_Xing @ 1.982189
19 British_Isles_Dodecad + Dutch_Dodecad + N._European_Xing + Slovenian_Xing @ 1.984521
20 British_Dodecad + Dutch_Dodecad + N._European_Xing + Slovenian_Xing @ 1.990038
Basal K7 easily
E-V13.
Basal-rich K7 seems to be the most conclusive test to date for ancient, Global 10 for modern.
puntDNAL K15:
Admix Results (sorted):
# Population Percent
1 E_Asian 81.58
2 S_Indian 7.31
3 Oceanian 3.87
4 Caucasian 1.57
5 NE_European 1.48
6 Mediterranean 1.39
7 Amerindian 1.16
8 W_African 0.47
9 Beringian 0.45
10 Horn_Of_Africa 0.3
11 Wht_Nile_River 0.22
12 S_African 0.2
Single Population Sharing:
# Population (source) Distance
1 Vietnamese 5
2 Thai 7.62
3 Chinese 11.42
4 Cambodian 12.44
5 Japanese 18.43
6 Burmese 21.58
7 Mongolian 45.25
8 Hazara 52.59
9 Uyghur 54.1
10 Turkmen 67
11 Koryak 68.63
12 Uzbek 74.54
13 Nogai 76.34
14 Bashkir 78.13
15 Tadjik 80.24
16 Romani 82.88
17 Burusho 84.1
18 Tatar 85.73
19 Turk_Aydin 86.17
20 Yemeni 86.77
Mixed Mode Population Sharing:
# Primary Population (source) Secondary Population (source) Distance
1 60.1% Cambodian + 39.9% Japanese @ 2.98
2 95.9% Vietnamese + 4.1% Greek_Thessaly @ 3.12
3 95.8% Vietnamese + 4.2% Greek_Central @ 3.13
4 95.9% Vietnamese + 4.1% Romanian @ 3.13
5 95.5% Vietnamese + 4.5% Romani @ 3.14
6 95.9% Vietnamese + 4.1% Bulgarian @ 3.14
7 95.9% Vietnamese + 4.1% Chechen @ 3.16
8 96% Vietnamese + 4% Lezgin @ 3.16
9 95.9% Vietnamese + 4.1% Greek_Athens @ 3.17
10 96% Vietnamese + 4% Serbian @ 3.17
11 96% Vietnamese + 4% Tuscan @ 3.17
12 95.9% Vietnamese + 4.1% Mexican @ 3.2
13 95.8% Vietnamese + 4.2% Balkar @ 3.2
14 95.9% Vietnamese + 4.1% Ashkenazy_Jew @ 3.2
15 96.1% Vietnamese + 3.9% Italian @ 3.22
16 95.9% Vietnamese + 4.1% North_Ossetian @ 3.22
17 96% Vietnamese + 4% Sicillian @ 3.23
18 96.2% Vietnamese + 3.8% Slovenian @ 3.23
19 96.2% Vietnamese + 3.8% French @ 3.23
20 95.9% Vietnamese + 4.1% Kumyk @ 3.23
PuntDNAL K12 Modern
87.3%NE_Bantu+12.7%Somali_Benadiri@3.572
92.4%NE_Bantu+7.6%Bengali_Muslim@3.963
93.2%NE_Bantu+6.8%Paniya@3.99492.7%NE_Bantu+7.3%Ta mil_Nadu@4.025
92.6%NE_Bantu+7.4%Keralam@4.046
93.1%NE_Bantu+6.9%Hakkipikki@4.057
92.7%NE_Bantu+7.3%Gujarati@4.218
92.5%NE_Bantu+7.5%UP_Muslim@4.289
92.5%NE_Bantu+7.5%Punjabi_Jatt_Muslim@4.3510
92.6%NE_Bantu+7.4%Kashmir@4.451192.7%NE_Bantu+7.3% Sindhi@4.541292.6%NE_Bantu+7.4%Punjabi_Jatt_Sikh@4 .5613
92.6%NE_Bantu+7.4%Haryana_Jatt@4.5814
84.9%NE_Bantu+15.1%Somali@4.6115
92.6%NE_Bantu+7.4%Burusho@4.6516
85.8%NE_Bantu+14.2%Oromo@4.651787.3%NE_Bantu+12.7% Ethiopian@4.7118
77.8%Esan+22.2%Somali_Benadiri@4.7419
91.1%NE_Bantu+8.9%Yemeni@4.7620
92.8%NE_Bantu+7.2%Pathan@4.8
Sent from my SM-G920F using Tapatalk
The other post wasnt clear) but PuntDNAL K12 moderns my fave :)https://uploads.tapatalk-cdn.com/201...97c6b01daa.jpg
Sent from my SM-G920F using Tapatalk
Still V3, all the way
V3 is not very accurate for me when it comes to Single Population Sharing:
Admix Results (sorted):
# Population Percent
1 West_European 42.83
2 East_European 28.7
3 Mediterranean 18.9
4 West_Asian 8.77
5 South_Asian 0.44
6 Southwest_Asian 0.31
7 East_African 0.05
Single Population Sharing:
# Population (source) Distance
1 Slovenian (Xing) 7.86
2 Hungarians (Behar) 8.24
3 German (Dodecad) 14.35
4 Polish (Dodecad) 16.85
5 Mixed_Slav (Dodecad) 17.26
6 FIN (1000Genomes) 17.95
7 N._European (Xing) 19.63
8 Argyll (1000 Genomes) 19.74
9 CEU (HapMap) 19.78
10 Balkans (Dodecad) 20.02
11 Orcadian (HGDP) 20.72
12 Orkney (1000 Genomes) 20.87
13 Finnish (Dodecad) 20.91
14 Russian (Dodecad) 22.37
15 Romanians_14 (Behar) 24.09
16 Russian (HGDP) 25.75
17 Swedish (Dodecad) 26.01
18 Mixed_Germanic (Dodecad) 26.19
19 French (Dodecad) 27.3
20 French (HGDP) 27.67
Mixed Mode Population Sharing:
# Primary Population (source) Secondary Population (source) Distance
1 60.4% Mixed_Slav (Dodecad) + 39.6% Mixed_Germanic (Dodecad) @ 2.15
2 53.4% Mixed_Slav (Dodecad) + 46.6% Argyll (1000 Genomes) @ 2.33
3 53.3% Mixed_Slav (Dodecad) + 46.7% N._European (Xing) @ 2.53
4 62% Mixed_Slav (Dodecad) + 38% Dutch (Dodecad) @ 2.7
5 54.7% Mixed_Slav (Dodecad) + 45.3% Orcadian (HGDP) @ 2.74
6 53.5% Mixed_Slav (Dodecad) + 46.5% CEU (HapMap) @ 2.75
7 54.8% Mixed_Slav (Dodecad) + 45.2% Orkney (1000 Genomes) @ 2.79
8 54.7% German (Dodecad) + 45.3% Mixed_Slav (Dodecad) @ 2.82
9 63.6% Mixed_Slav (Dodecad) + 36.4% Kent (1000 Genomes) @ 2.92
10 65.4% Mixed_Slav (Dodecad) + 34.6% Cornwall (1000 Genomes) @ 3.13
11 61.1% Polish (Dodecad) + 38.9% Mixed_Germanic (Dodecad) @ 3.14
12 52.1% Mixed_Germanic (Dodecad) + 47.9% Belorussian (Behar) @ 3.19
13 64.9% Mixed_Slav (Dodecad) + 35.1% British (Dodecad) @ 3.32
14 53.1% CEU (HapMap) + 46.9% Russian (Dodecad) @ 3.33
15 53.9% Polish (Dodecad) + 46.1% N._European (Xing) @ 3.35
16 59.4% N._European (Xing) + 40.6% Belorussian (Behar) @ 3.36
17 59.3% Argyll (1000 Genomes) + 40.7% Belorussian (Behar) @ 3.37
18 54.1% Polish (Dodecad) + 45.9% Argyll (1000 Genomes) @ 3.42
19 64.5% Mixed_Slav (Dodecad) + 35.5% British_Isles (Dodecad) @ 3.42
20 74.5% Slovenian (Xing) + 25.5% Finnish (Dodecad) @ 3.49
MDLP. They're all fun to try out, but MDLP is better for the north east corner of Europe.
MDLP and all of the Eurogene's versions
K13
My Sperm is the best genetic admixture calculator. It makes good looking offspring, lol.