Target: Sorb_Niederlausitz
Distance: 1.9298% / 0.01929826 | ADC: 0.25x
67.0 Slavic
18.2 Baltic
14.8 Balkan
0 Germanic?
It seems to be wrongly calibrated.
Printable View
Target: Sorb_Niederlausitz
Distance: 1.9298% / 0.01929826 | ADC: 0.25x
67.0 Slavic
18.2 Baltic
14.8 Balkan
0 Germanic?
It seems to be wrongly calibrated.
They score no similarity with medieval Germanic samples, sorry. Not weird considering they plot east of Czechs.
However Balkan samples have some western european drift, especially those from Croatia.
My guess is David handpicked purest Sorbs for his average he could find. His Polish average is also very Slavic and eastern shifted.
I've been playing with this Hungarian academic average with qpAdm. Apparently they don't need anything besides Germanic and Slavic, the Balkan stuff is just Global25 overfitting the data. This is one of the models that i ran (obs: qpAdm does not distinguish North Europeans, so Germany_EMedieval is a stand in for both Slavic and Germanic. The exact proportions of both should be analysed using G25):
Hungarian
Germany_EMedieval 0.873 +- 0.100
Lech_MBA 0.127 +- 0.100
chisq 10.154
tail prob 0 516617
So Lech_MBA isn't required (and neither are Hungary_Scythian and Croatia_EIA) since the std.error is basically equal to the admixture coefficient, so the nested model with only Germany_EMedieval (p-value: 0.14) is closer to optimal.
Full output:
Code:left pops:
Hungarian
Germany_EMedieval.SG
Germany_Lech_MBA
right pops:
Czech_Vestonice16
Russia_Ust_Ishim.DG
Russia_MA1_HG.SG
Italy_North_Villabruna_HG
Jordan_PPNB
Romania_Mesolithic_IronGates
Georgia_Satsurblia.SG
Morocco_Iberomaurusian
Iran_GanjDareh_N
Cameroon_SMA.DG
Anatolia_N
Russia_Steppe_Eneolithic
Russia_HG_Karelia
0 Hungarian 20
1 Germany_EMedieval.SG 35
2 Germany_Lech_MBA 7
3 Czech_Vestonice16 1
4 Russia_Ust_Ishim.DG 1
5 Russia_MA1_HG.SG 1
6 Italy_North_Villabruna_HG 1
7 Jordan_PPNB 4
8 Romania_Mesolithic_IronGates 4
9 Georgia_Satsurblia.SG 1
10 Morocco_Iberomaurusian 6
11 Iran_GanjDareh_N 8
12 Cameroon_SMA.DG 1
13 Anatolia_N 22
14 Russia_Steppe_Eneolithic 3
15 Russia_HG_Karelia 2
jackknife block size: 0.050
snps: 593124 indivs: 117
number of blocks for block jackknife: 711
dof (jackknife): 602.170
numsnps used: 46474
codimension 1
f4info:
f4rank: 1 dof: 11 chisq: 10.154 tail: 0.51661742 dofdiff: 13 chisqdiff: -10.154 taildiff: 1
B:
scale 1.000
Russia_Ust_Ishim.DG 1.491
Russia_MA1_HG.SG 1.268
Italy_North_Villabruna_HG 0.060
Jordan_PPNB -0.175
Romania_Mesolithic_IronGates 1.095
Georgia_Satsurblia.SG 0.757
Morocco_Iberomaurusian 0.364
Iran_GanjDareh_N 0.759
Cameroon_SMA.DG 1.266
Anatolia_N 0.177
Russia_Steppe_Eneolithic 1.180
Russia_HG_Karelia 1.621
A:
scale 941.312
Germany_EMedieval.SG 0.204
Germany_Lech_MBA -1.399
full rank 1
f4info:
f4rank: 2 dof: 0 chisq: 0.000 tail: 1 dofdiff: 11 chisqdiff: 10.154 taildiff: 0.51661742
B:
scale 1.000 1.000
Russia_Ust_Ishim.DG 1.520 -0.475
Russia_MA1_HG.SG 1.145 0.221
Italy_North_Villabruna_HG 0.102 0.032
Jordan_PPNB -0.226 1.608
Romania_Mesolithic_IronGates 1.080 0.028
Georgia_Satsurblia.SG 0.674 1.886
Morocco_Iberomaurusian 0.357 1.491
Iran_GanjDareh_N 0.776 0.505
Cameroon_SMA.DG 1.309 -0.603
Anatolia_N 0.145 1.543
Russia_Steppe_Eneolithic 1.170 0.137
Russia_HG_Karelia 1.692 -0.584
A:
scale 991.102 3066.804
Germany_EMedieval.SG 0.674 1.243
Germany_Lech_MBA -1.243 0.674
best coefficients: 0.873 0.127
ssres:
0.000479023 0.000581661 0.000056186 0.000515624 0.000479649 0.001012712 0.000723984 0.000529943 0.000338111 0.000651928 0.000560565 0.000512255
0.828304055 1.005779384 0.097153245 0.891591578 0.829385221 1.751132727 1.251877553 0.916352117 0.584644749 1.127281671 0.969301143 0.885767176
Jackknife mean: 0.864886518 0.135113482
std. errors: 0.100 0.100
error covariance (* 1000000)
10007 -10007
-10007 10007
fixed pat wt dof chisq tail prob
00 0 11 10.154 0.516617 0.873 0.127
01 1 12 12.339 0.418882 1.000 -0.000
10 1 12 41.981 3.35445e-05 0.000 1.000
best pat: 00 0.516617 - -
best pat: 01 0.418882 chi(nested): 2.185 p-value for nested model: 0.139368
Your right pops are too old and basic for such a recent run(migration era samples).
There’s absolutely no way Hungarians don’t have any more Southern ancestry than the Belarussian-like early Slavs and the Scandinavian-like early Germanics, Hungarians score significantly more Barcin than both these populations. There’s some East Eurasian there too albeit noise level.
Target: Knez_scaled
Distance: 2.2982% / 0.02298201
33.2 Slavic
31.8 Greco-Roman
23.0 Baltic
12.0 Balkan
Target: Knez_scaled
Distance: 2.4368% / 0.02436807 | ADC: 0.25x
66.4 Slavic
23.0 Greco-Roman
10.6 Balkan
Hungarians are a Nordo-Slavic mix like northeast Germans? this doesn't make sense.
could you try it with these outgroups?
set 1: Anatolia_N (25), CHG (2), EHG (4), ElMiron (1), Iran_Ganj_Dareh_N (3),
Jordan_PPNB (1), MA1 (1), Mbuti (10), Natufian (6), Ust_Ishim (1), Vestonice16 (1), WHG (6),
Russia_Yamnaya_Samara (9)
set 2: Anatolia_N (25), CHG (2), EHG (4), ElMiron (1), GoyetQ116-1 (1), Iran_Ganj_Dareh_N (3),
Jordan_PPNB (1), Kostenki14 (1), MA1 (1), Morocco_Iberomaurusian (6), Mota (1), Natufian (6),
Ust_Ishim (1), Vestonice16 (1), Italy_Villabruna (1), WHG (6), Russia_Yamnaya_Samara (9).
that's what was used in the Rome study
Target: Chris_scaled
Distance: 1.9340% / 0.01933960 | ADC: 0.25x
45.8 Slavic
41.0 Balkan
9.2 Celtic
4.0 Greco-Roman
Target: ChrisFather
Distance: 4.3609% / 0.04360857 | ADC: 0.25x
50.6 Balkan
33.6 Slavic
15.8 Greco-Roman
No, my right pops are very solid for my purpose, have you bothered reading Patterson's notes or looking at the supp. files of genetic papers? Actually i am being quite restrictive here.
Your observations are all based on Global25 so they are meaningless for formal stats, run your qpAdm model and prove me wrong (spoiler: they will show the same). There is no East Eurasian in this Hungarian sample, albeit i am pretty sure Hungarians from the Great Plain will show some.