Page 6 of 8 FirstFirst ... 2345678 LastLast
Results 51 to 60 of 71

Thread: Running Gedmatch calculators on the command line with stevenliuyi/admix

  1. #51
    Banned
    Join Date
    Sep 2020
    Last Online
    09-12-2023 @ 03:47 PM
    Location
    コミ共和国
    Meta-Ethnicity
    Finno-Permic
    Ethnicity
    Peasant
    Ancestry
    コミ
    Country
    Finland
    Taxonomy
    Karaboğa (euryprosopic, platyrrhine, dolichocephalic)
    Relationship Status
    Virgin
    Gender
    Posts
    2,150
    Thumbs Up/Down
    Received: 4,862/123
    Given: 2,945/0

    0 Not allowed! Not allowed!

    Default

    Quote Originally Posted by Leto View Post
    What do you mean by used to construct? G25 is not based on any specific dataset, you can use anything as long as you have the coordinates for that. Only Gedmatch was made up of artificial components based on modern samples (North Atlantic, Baltic, etc.).
    I think the G25 datasheets consist of only projected samples, because projected samples plot differently from reference samples.

    For example in the plot below, I took 8 random samples from different populations, I used half of samples from each population as references, which are indicated by a triangle, and I projected the other half of samples, which are indicated by a circle (https://anthrogenica.com/showthread....l=1#post806356). The reference samples plot further away from the center, in the same way that in ADMIXTURE, reference samples get higher percentages of their main components than projected samples:



    Davidski refers to this phenomenon as "projection bias" (https://eurogenes.blogspot.com/2017/...-r1a-z645.html):

    Speaking of projection bias, I'm quite certain that their Principal Component Analysis (PCA) suffers from it. The ancient samples look like they're being pulled into the middle of the plot, so much so that one of the foragers basically clusters with modern-day Lithuanians, while the CWC individuals appear too western. They need to fix this.


    In SMARTPCA, you can use the `poplistname` option to do projection, and in PLINK 2, you can use `--score`:

    https://compvar-workshop.readthedocs...-vs-projection
    https://www.cog-genomics.org/plink/2...re#pca_project
    https://groups.google.com/g/plink2-u...m/b_o3JMrxAwAJ

  2. #52
    Veteran Member
    Join Date
    Jul 2014
    Last Online
    07-31-2025 @ 08:40 PM
    Meta-Ethnicity
    Indo-European, Slavic
    Ethnicity
    Russian (privately view myself as Aryan)
    Country
    Brunei
    Region
    Russian Turkestan General Governorship
    Y-DNA
    R1a-Z282-YP350
    Religion
    Orthodox Christian
    Gender
    Posts
    24,264
    Thumbs Up/Down
    Received: 15,693/315
    Given: 8,913/358

    0 Not allowed! Not allowed!

    Default

    Anyway, if there is a third study out there with Tajik samples in it (other than Yunus and Jeong), please let me know. I need them for my Steppe-centric Central Asian model.

  3. #53
    Veteran Member
    Join Date
    Jul 2014
    Last Online
    07-31-2025 @ 08:40 PM
    Meta-Ethnicity
    Indo-European, Slavic
    Ethnicity
    Russian (privately view myself as Aryan)
    Country
    Brunei
    Region
    Russian Turkestan General Governorship
    Y-DNA
    R1a-Z282-YP350
    Religion
    Orthodox Christian
    Gender
    Posts
    24,264
    Thumbs Up/Down
    Received: 15,693/315
    Given: 8,913/358

    0 Not allowed! Not allowed!

    Default

    Sorry, that stuff is kind of hard for me to understand.

  4. #54
    Veteran Member
    Join Date
    Jul 2019
    Last Online
    03-11-2024 @ 04:25 PM
    Ethnicity
    Unknown
    Country
    Antarctica
    Gender
    Posts
    3,910
    Thumbs Up/Down
    Received: 3,464/7
    Given: 1,535/1

    1 Not allowed! Not allowed!

    Default

    Quote Originally Posted by Leto View Post
    Does G25 have components? There are no fixed calculators on G25 unlike on Gedmatch. When I go to Vahaduo G25, I see a lot of shit made up by TA users and other folks plus David's standard model.
    there are the 25 principal components (coordinates), the difference is that they don't range from 0% to 100% like the gedmatch components, for example the first one peaks in Lithuanians 0.14 and is lowest in Mbuti at -0.65.

  5. #55
    Banned
    Join Date
    Sep 2020
    Last Online
    09-12-2023 @ 03:47 PM
    Location
    コミ共和国
    Meta-Ethnicity
    Finno-Permic
    Ethnicity
    Peasant
    Ancestry
    コミ
    Country
    Finland
    Taxonomy
    Karaboğa (euryprosopic, platyrrhine, dolichocephalic)
    Relationship Status
    Virgin
    Gender
    Posts
    2,150
    Thumbs Up/Down
    Received: 4,862/123
    Given: 2,945/0

    0 Not allowed! Not allowed!

    Default

    Quote Originally Posted by Leto View Post
    Anyway, if there is a third study out there with Tajik samples in it (other than Yunus and Jeong), please let me know. I need them for my Steppe-centric Central Asian model.
    There's G25 coordinates for some Tajik samples in Cardona et al. 2014, "Genome-Wide Analysis of Cold Adaptation in Indigenous Siberian Populations": https://anthrogenica.com/showthread....Sample-for-G25, https://pastebin.com/raw/MhkaSSgD.

    In the stock G25, the average of the Tajik samples from Cardona is actually closer to Turkmens and Uzbeks than to Tajiks:

    Code:
    $ dist()(awk -F, 'NR==FNR{for(i=2;i<=NF;i++)a[i]=$i;next}$1{s=0;for(i=2;i<=NF;i++)s+=($i-a[i])^2;printf"%f %s\n",s^.5,$1}' "$2" "$1"|sort -n|awk '{printf"%."x"f %s\n",$1,$2}' "x=${3-3}"|sed s,^0,,)
    $ tav()(awk '{n[$1]++;for(i=2;i<=NF;i++){a[$1][i]+=$i}}END{for(i in a){o=i;for(j=2;j<=NF;j++)o=o FS sprintf("%f",a[i][j]/n[i]);print o}}' "FS=${1-$'\t'}")
    $ curl -Ls https://pastebin.com/raw/MhkaSSgD|grep Tajik|sed 's/:[^,]*//'|tav ,|dist <(curl -Ls 'https://drive.google.com/uc?export=download&id=1wZr-UOve0KUKo_Qbgeo27m-CQncZWb8y') -|head -n8
    .028 Turkmen_Uzbekistan
    .029 Turkmen
    .061 Uzbek
    .067 Tatar_Crimean_steppe
    .071 Tajik
    .076 Sarikoli_China
    .088 Tatar_Lipka
    .092 Tajik_Badakshan

  6. #56
    Veteran Member
    Join Date
    Jul 2014
    Last Online
    07-31-2025 @ 08:40 PM
    Meta-Ethnicity
    Indo-European, Slavic
    Ethnicity
    Russian (privately view myself as Aryan)
    Country
    Brunei
    Region
    Russian Turkestan General Governorship
    Y-DNA
    R1a-Z282-YP350
    Religion
    Orthodox Christian
    Gender
    Posts
    24,264
    Thumbs Up/Down
    Received: 15,693/315
    Given: 8,913/358

    0 Not allowed! Not allowed!

    Default

    Quote Originally Posted by Komintasavalta View Post
    There's G25 coordinates for some Tajik samples in Cardona et al. 2014, "Genome-Wide Analysis of Cold Adaptation in Indigenous Siberian Populations": https://anthrogenica.com/showthread....Sample-for-G25, https://pastebin.com/raw/MhkaSSgD.

    In the stock G25, the average of the Tajik samples from Cardona is actually closer to Turkmens and Uzbeks than to Tajiks:

    Code:
    $ dist()(awk -F, 'NR==FNR{for(i=2;i<=NF;i++)a[i]=$i;next}$1{s=0;for(i=2;i<=NF;i++)s+=($i-a[i])^2;printf"%f %s\n",s^.5,$1}' "$2" "$1"|sort -n|awk '{printf"%."x"f %s\n",$1,$2}' "x=${3-3}"|sed s,^0,,)
    $ tav()(awk '{n[$1]++;for(i=2;i<=NF;i++){a[$1][i]+=$i}}END{for(i in a){o=i;for(j=2;j<=NF;j++)o=o FS sprintf("%f",a[i][j]/n[i]);print o}}' "FS=${1-$'\t'}")
    $ curl -Ls https://pastebin.com/raw/MhkaSSgD|grep Tajik|sed 's/:[^,]*//'|tav ,|dist <(curl -Ls 'https://drive.google.com/uc?export=download&id=1wZr-UOve0KUKo_Qbgeo27m-CQncZWb8y') -|head -n8
    .028 Turkmen_Uzbekistan
    .029 Turkmen
    .061 Uzbek
    .067 Tatar_Crimean_steppe
    .071 Tajik
    .076 Sarikoli_China
    .088 Tatar_Lipka
    .092 Tajik_Badakshan
    Wow, thank you so much! They do seem to be more Mongoloid than the ones I previously had. Probably from Northern/Northwestern TJK (Sughd region). Some are well over 25% East Eurasian.

    Their BA Steppe average is 30.9 percent (three samples are below 30%, the highest value is 34.9%). Don't know what they would score on Gedmatch though.

  7. #57
    Banned
    Join Date
    Sep 2020
    Last Online
    09-12-2023 @ 03:47 PM
    Location
    コミ共和国
    Meta-Ethnicity
    Finno-Permic
    Ethnicity
    Peasant
    Ancestry
    コミ
    Country
    Finland
    Taxonomy
    Karaboğa (euryprosopic, platyrrhine, dolichocephalic)
    Relationship Status
    Virgin
    Gender
    Posts
    2,150
    Thumbs Up/Down
    Received: 4,862/123
    Given: 2,945/0

    2 Not allowed! Not allowed!

    Default

    I now finished running K13 for all 14,313 samples in the 1240K+HO version of the Reich dataset: https://drive.google.com/file/d/15Mv...EctOhPPECGzZC9. There's many samples that suffer from the calculator effect, because I didn't bother removing samples that were used as references in K13.

    The code below selects populations that include at least one sample whose latitude is over 50, and it adds up the percentage of the Siberian, East Asian, and American components:

    Code:
    $ curl 'https://drive.google.com/uc?export=download&id=15Mvba7Bw07VtixiBO_EctOhPPECGzZC9' -Lso reich.k13
    $ curl https://reichdata.hms.harvard.edu/pub/datasets/amh_repo/curated_releases/V50/V50.0/SHARE/public.dir/v50.0_HO_public.anno|iconv -f macintosh -t utf-8 >ho.anno
    $ igno()(grep -Ev '\.REF|rel\.|fail\.|\.contam|Ignore_|_dup|_contam|_lc|_father|_mother|_son|_daughter|_brother|_sister|_relative|_sibling|_twin|Neanderthal|Denisova|Vindija_light|Gorilla|Macaque|Marmoset|Orangutan|Primate_Chimp|hg19ref')
    $ tav()(awk '{n[$1]++;for(i=2;i<=NF;i++){a[$1,i]+=$i}}END{for(i in n){o=i;for(j=2;j<=NF;j++)o=o FS sprintf("%f",a[i,j]/n[i]);print o}}' "FS=${1-$'\t'}")
    $ sed 1d reich.k13|igno|sed 's/:[^,]*//'|tav ,|sort>reich.k13.ave
    $ awk -F\\t '$10>=50{print$7}' ho.anno|igno|awk -F, 'NR==FNR{a[$0];next}$1 in a' - reich.k13.ave|awk -F, '{print$9+$10+$11,$1}'|sort -n|awk '{$1=sprintf("%.0f",$1)}1'
    0 Czech_Baalberge
    0 Czech_Bohemia_Baden_N
    0 Czech_Bohemia_CordedWare_o1
    0 Czech_Bohemia_Jordanow_N
    0 Czech_Bohemia_Rivnac_N_oAnatolia
    0 Czech_Bohemia_Rivnac_N_oWHG
    0 Czech_C_Baalberge_o1
    0 Czech_C_Baalberge_o2
    0 Czech_EarlySlav.SG
    0 Czech_Eneolithic
    0 Czech_MN
    0 Czech_N
    0 England_IA_ERoman.SG
    0 England_IA_Roman_oMiddleEast.SG
    0 England_Mesolithic.SG
    0 England_Mesolithic_o1
    0 England_Mesolithic_o1.SG
    0 England_N_published
    0 England_Trumpington_N.SG
    0 Faroes_EarlyModern_o2.SG
    0 France_HautsDeFrance_MN.SG
    0 Germany_Blatterhohle_MN_oWHG
    0 Germany_CordedWare_o
    0 Germany_LN_oWHG
    0 Germany_MN_Esperstedt
    0 Germany_MN_Salzmuende
    0 Germany_N
    0 Germany_Tollense_BA_o1.SG
    0 Iceland_Early_Christian_o.SG
    0 Ireland_EN.SG
    0 Ireland_Mesolithic.SG
    0 Ireland_N.SG
    0 Poland_BKG.SG
    0 Poland_BKG_o2.SG
    0 Poland_GAC.SG
    0 Poland_Globular_Amphora_published
    0 Poland_Medieval_1.SG
    0 Poland_Mierzanowice_GAC.SG
    0 Poland_TRB_o.SG
    0 Poland_Wilczyce_GAC.SG
    0 Russia_EasternScythian_SouthernUrals_o.SG
    0 Scotland_MBA_published
    0 Scotland_Megalithic.SG
    0 Scotland_N_lowEEF_all.SG
    0 Scotland_N_mediumlowEEF
    0 Scotland_N_published
    0 Sweden_BA.SG
    0 Sweden_FBC.SG
    0 Sweden_Gotland_Vasterbjers_PittedWare_BattleAxe_o.SG
    0 Sweden_TRB_MN
    0 Wales_Mesolithic
    0 Wales_Mesolithic.SG
    0 Wales_N_all.SG
    0 England_Mesolithic
    0 Czech_C_Baalberge
    0 Czech_Bohemia_Rivnac_N
    0 Germany_Tollense_BA_o2.SG
    0 Poland_TRB.SG
    0 Germany_EN_LBK_published
    0 Ireland_MN.SG
    0 Poland_BKG_o1.SG
    0 Denmark_MN_B.SG
    0 Ireland_EN_MN.SG
    0 Poland_Globular_Amphora
    0 English.DG
    0 England_N.SG
    0 Germany_Blatterhohle_MN
    0 Scotland_N
    0 Poland_Koszyce_GAC.SG
    0 Czech_Bohemia_CordedWare_o3
    0 England_N_all.SG
    0 Ireland_LN.SG
    0 Scotland_N_lowEEF.SG
    0 England_N
    0 Czech_Bohemia_GlobularAmphorae_N
    0 Germany_MN_Baalberge
    0 Sweden_EarlyViking.SG
    0 Scotland_N.SG
    0 Germany_LBA_Halberstadt_published
    0 Ukraine_Medieval.SG
    0 England_Mesolithic_all.SG
    0 Scotland_N_lowEEF
    0 England_MBA_highEEF
    0 Germany_EN_LBK
    0 Sweden_Ansarve_Megalithic.SG
    1 English
    1 Poland_Sandomierz_GAC.SG
    1 Faroes_EarlyModern_o1.SG
    1 Sweden_LNBA
    1 Czech.DG
    1 Wales_MBA_published
    1 England_BellBeaker_highWHG_published
    1 Russia_MLBA_Sintashta_published
    1 Polish.DG
    1 Wales_N
    1 Czech_Bohemia_BellBeaker_oAnatolia1
    1 Sweden_IA_2.SG
    1 Czech_Bohemia_FunnelBeaker_N
    1 Ireland_Megalithic.SG
    1 Norway_IA.SG
    1 Czech_MN.SG
    1 Denmark_Viking_o1.SG
    1 Czech_Bohemia_CordedWare_o2
    1 Czech_EBA_Starounetice
    1 England_EarlyMedieval_Saxon.SG
    1 Lithuanian
    1 England_BellBeaker_mediumEEF
    1 Wales_N.SG
    1 Germany_LN_Alberstedt
    1 French
    1 Orcadian.SDG
    1 Kazakhstan_Chanchar_MBA_published
    1 England_MBA_lowEEF
    1 Germany_BellBeaker_published
    1 Orcadian
    1 Denmark_Viking_o2.SG
    1 Poland_Ksiaznice_GAC.SG
    1 Orcadian.DG
    1 Ireland_Viking.SG
    1 Icelandic.DG
    1 Latvia_BA
    1 Icelandic
    1 Scotland_Viking.SG
    1 Russia_IA_Ingria.SG
    1 Poland_CWC_1.SG
    1 Denmark_Viking.SG
    1 Norway_Viking_o2.SG
    1 Poland_Medieval_2.SG
    1 Czech
    1 England_IA.SG
    1 Poland_ChopiceVeseleCulture
    1 Lithuania_EMN_Narva
    1 Iceland_Pre_Christian.SG
    1 Sweden_BattleAxe.SG
    1 Poland_BellBeaker_published
    2 Faroes_EarlyModern.SG
    2 England_IA_o.SG
    2 Norwegian
    2 Greenland_EarlyNorse.SG
    2 Iceland_Early_Christian.SG
    2 Russia_MLBA_Sintashta.SG
    2 Russia_Ivanovo_Fatyanovo_BA.SG
    2 Scotland_C_EBA_mediumhighEEF
    2 Sweden_Gotland_Vasterbjers_PittedWare_BattleAxe_o_minus.SG
    2 Scotland_C_EBA_mediumhighEEF_published
    2 Germany_Tollense_BA.SG
    2 Russia_MBA_Poltavka_oEEF
    2 Russia_Moscow_Fatyanovo_BA.SG
    2 Ukraine_Viking_o.SG
    2 Germany_EBA_Unetice_published
    2 England_IA_Roman.SG
    2 Sweden_Viking_o2.SG
    2 Scotland_Viking_o.SG
    2 Russia_Tver_Fatyanovo_BA.SG
    2 Estonia_EarlyViking.SG
    2 Scotland_LBA
    2 Norway_Medieval.SG
    2 Sweden_Late_N.SG
    2 Czech_Bohemia_BellBeaker
    2 Latvia_MN_o1.SG
    2 Netherlands_BellBeaker
    2 Denmark_EarlyViking.SG
    2 Denmark_IA.SG
    2 Russia_Yaroslavl_Fatyanovo_BA.SG
    2 Lithuania_LN_o
    2 Sweden_LN.SG
    2 Germany_EBA_Unetice
    2 Sweden_IA.SG
    2 Czech_BellBeaker
    2 Czech_Bohemia_Unetice_EBA
    2 Estonia_CordedWare
    2 England_MBA
    2 Kazakhstan_Maitan_MLBA_Alakul
    2 England_C_EBA
    2 Belarusian
    2 Sweden_Viking.SG
    2 Ireland_EBA.SG
    2 England_Viking_o.SG
    2 Wales_C_EBA
    2 Jew_Ashkenazi
    2 Estonia_IdaViru_CordedWare_Neolithic.SG
    2 Scotland_MBA
    2 Ukrainian
    2 England_BellBeaker_highEEF
    2 Czech_EBA
    2 Ukrainian_North
    2 Greenland_EarlyNorse_o1.SG
    2 Estonia_BA.SG
    2 Scottish
    2 Scotland_Mesolithic_all.SG
    2 Estonian.DG
    2 England_LBA
    2 Czech_Bohemia_BellBeaker_oAnatolia2
    2 Germany_BellBeaker
    2 Latvia_HG.SG
    2 Lithuania_BA
    2 Netherlands_BA
    2 Germany_BenzigerodeHeimburg_LN
    2 Sweden_PWC.SG
    2 Russia_Viking.SG
    2 Germany_Mesolithic
    2 Poland_Southeast_BellBeaker.SG
    2 England_Viking.SG
    2 England_BellBeaker
    2 Estonia_CordedWare.SG
    3 Estonia_CordedWare.SG_o1
    3 Faroes_Viking.SG
    3 Poland_Viking.SG
    3 Sweden_IA_1.SG
    3 Sweden_Motala_HG.SG
    3 Scotland_C_EBA
    3 England_C_EBA_lowEEF
    3 Lithuania_Mesolithic
    3 Russia_MLBA_Sintashta
    3 Czech_BA_Veterov_1
    3 England_C_EBA_highEEF
    3 Finland_Levanluhta_B
    3 Lithuania_EMN_Narva_o
    3 Denmark_LN_BA.SG
    3 Kazakhstan_MLBA_Alakul_Lisakovskiy
    3 Latvia_HG
    3 Czech_IA_Hallstatt.SG
    3 Estonia_CordedWare.SG_o2
    3 Poland_BellBeaker
    3 Sweden_Gotland_Hemmor_PittedWare_BattleAxe_minus.SG
    3 Poland_EBA
    3 Iceland_Viking.SG
    3 Czech_Bohemia_CordedWare
    3 Germany_LN_Karsdorf
    3 Denmark_Djursland_SingleGraveCulture.SG
    3 Greenland_LateNorse.SG
    3 Sweden_TRB_MN.SG
    3 Sweden_Gotland_Ajvide_PittedWare_BattleAxe.SG
    3 Poland_EBA.SG
    3 Poland_EBA_Unetice.SG
    3 Estonia_IA.SG
    3 Sweden_Gotland_Vasterbjers_PittedWare_BattleAxe.SG
    3 Russia_Andronovo.SG
    3 England_LBA_lowEEF
    3 Sweden_BAC.SG
    3 Russia_SaltovoMayaki.SG
    3 England_BellBeaker_lowEEF
    3 Germany_CordedWare.SG
    3 Russia_Srubnaya
    3 Estonian
    3 Norway_Medieval_o.SG
    3 Sweden_Gotland_Hemmor_PittedWare_BattleAxe.SG
    3 Norway_Viking.SG
    4 Sweden_Gotland_Vasterbjers_PittedWare_BattleAxe_minus.SG
    4 Denmark_BA.SG
    4 Sweden_Viking_o1.SG
    4 Latvia_MN
    4 Poland_CWC_3.SG
    4 Germany_CordedWare
    4 Ukraine_IA_WesternScythian_o1.SG
    4 Scotland_BellBeaker
    4 Czech_CordedWare
    4 IsleOfMan_Viking.SG
    4 Russia_Srubnaya_Alakul.SG
    4 Germany_CordedWare_published_o1
    4 Russia_Viking_o.SG
    4 Estonia_CWC.SG
    4 Poland_Southeast_CordedWare.SG
    4 Sweden_Mesolithic.SG
    4 Kazakhstan_LBA_Guruldek_published
    4 Russia_Potapovka_o2
    4 Estonia_EMN_Narva
    4 Russia_Sunghir_Medieval.SG
    5 Sweden_Motala_HG
    5 Kazakhstan_Georgievsky_MBA_published
    5 Sweden_Mesolithic_o.SG
    5 Lithuania_LN
    5 Sweden_HG.SG
    5 Poland_CWC.SG
    5 Russian
    5 Kazakhstan_Andronovo.SG
    5 Russia_Afanasievo
    5 Russia_MBA_Poltavka
    5 Russia_Samara_EBA_Yamnaya
    5 Russia_Petrovka
    5 Czech_Bohemia_Jordanow_Michelsberg_N
    5 Ukraine_Viking.SG
    5 Russia_Samara_EBA_Yamnaya_published
    5 England_C_EBA_published
    5 Latvia_LN_CordedWare.SG
    6 Russia_MLBA_Krasnoyarsk
    6 Estonia_Medieval.SG
    6 Russia_Afanasievo.SG
    6 Czech_Bohemia_BellBeaker_oSteppe
    6 Russia_MBA_Poltavka_published
    6 Russia_MLBA_Sintashta_o2
    6 Finnish.DG
    6 Russia_Samara_EBA_Yamnaya_published2
    6 Latvia_LN_CordedWare
    6 Kazakhstan_MLBA_Sintashta_o.SG
    6 Russia_MBA_Poltavka_o2
    6 Poland_CordedWare_ProtoUnetice.SG
    7 Belgium_UP_Magdalenian_udg
    7 Kazakhstan_Maitan_MLBA_Alakul_o1
    7 Kazakhstan_Shoendykol_MLBA_Fedorovo
    7 Norway_N_HG.SG
    7 Denmark_LN.SG
    7 Kazakhstan_Mereke_MBA_o2
    7 Sweden_PWC_o.SG
    7 Russia_MLBA_Potapovka
    7 FIN_o
    7 Estonia_BA_o.SG
    8 Kazakhstan_Zevakinskiy_BA
    8 Russian.DG
    8 Lithuania_Late_Antiquity.SG
    8 Latvia_MN_o2
    8 Russia_IA_EarlySarmatian
    8 Kazakhstan_CentralSaka_o2.SG
    8 Mordovian
    8 Finnish
    8 Norway_Mesolithic.SG
    8 Russian.SDG
    8 Russia_Yaroslavl_VolosovoLyalovo_N.SG
    9 Kazakhstan_Sarmatian.SG
    9 Russia_Popovo_HG
    9 Karelian
    9 Estonia_N_CombCeramic.SG
    9 Russia_Kostenki14.SG
    9 Belgium_UP_GoyetQ116_1_published
    9 Denmark_LBA.SG
    9 Russian_Archangelsk_Krasnoborsky
    10 Russia_Sunghir3.SG
    10 Russia_Sunghir4.SG
    10 Belgium_UP_Magdalenian
    10 Russia_Kostenki14
    10 Belgium_UP_GoyetQ116_1_published_all
    10 Norway_LN_BA.SG
    10 Estonia_MN_CCC_1
    10 Lithuania_LBA.SG
    11 Netherlands_BellBeaker_published
    11 Russia_MiddleSarmatian_SouthernUrals.SG
    11 Russia_Sunghir2.SG
    11 Veps
    11 Kazakhstan_Sarmatian_IA
    11 Russia_Potapovka
    11 Estonia_MN_CCC_2
    11 Ukraine_IA_WesternScythian.SG
    11 Russia_Khvalynsk_Eneolithic
    11 Russian_Archangelsk_Pinezhsky
    12 Russia_Sunghir1.SG
    12 Russia_HG_Karelia
    12 Kazakhstan_Birlik_EIA.SG
    12 Russia_LateSarmatian.SG
    12 Russia_EarlySarmatian.SG
    12 Russia_Arkhangelsk_Veretye_Mesolithic.SG
    13 Kazakhstan_IA_Chanchar_published
    13 Kazakhstan_LIA_Georgievsky_published
    13 Russia_EarlySarmatian_SouthernUrals.SG
    13 Russia_IA_Scythian_questionable
    13 Russia_HG_Samara
    13 Russia_Srubnaya_o1
    14 Latvia_MN_o3
    14 Russia_Vologda_Veretye_Mesolithic.SG
    14 Russia_Sidelkino_HG.SG
    14 Latvia_MN_Comb_Ware.SG
    14 Russia_AfontovaGora2.SG
    14 Russia_Kostenki12
    15 Kazakhstan_Nomad_IA_o.SG
    15 Scotland_C_EBA_published
    15 Russian_Archangelsk_Leshukonsky
    15 Kazakhstan_Maitan_MLBA_Alakul_o2
    15 Russia_MLBA_Sintashta_o1
    16 Russia_Potapovka_o1
    16 Russia_EHG
    16 Kazakhstan_Zevakinskiy_LBA_o
    16 Russia_Mezhovskaya.SG
    16 Tatar_Mishar
    18 Russia_HG_Karelia.SG
    18 Belgium_UP_GoyetQ376-19_published
    18 Russia_LBA_Priobrazhenka
    18 Kazakhstan_Mereke_MBA
    19 Kazakhstan_MLBA_Zevakinskiy
    19 Russia_Ust_Ishim.DG
    19 Russia_Ust_Ishim_HG_published.DG
    19 Russia_Andronovo_o.SG
    20 Russia_Tagar.SG
    20 Russia_MLBA_Sintashta_o3
    20 Russia_Yana_UP.SG
    21 Tatar_Kazan
    21 Russia_MA1_HG.SG
    21 Kazakhstan_Zevakinskiy_LBA
    21 Russia_LBA_1.SG
    23 Chuvash
    23 Besermyan
    24 Russia_Karasuk_oRISE.SG
    25 Saami.WGA
    25 Saami.DG
    25 Russia_Chalmny_Varre
    26 Russia_AfontovaGora3
    26 Udmurt
    27 Kazakstan_Sargat_IA
    28 Russia_Gorokhov_IA_2
    29 Russia_HG_Sosnoviy
    30 Kazakhstan_Nomad_IA.SG
    31 Finland_Levanluhta
    32 Russia_Sargat_IA
    33 Bashkir
    33 Finland_Saami_IA.SG
    34 Russia_HG_Tyumen
    34 Russia_MLBA_Krasnoyarsk_o
    34 Aleut_o1
    34 Aleut_o1.DG
    35 Kazakhstan_Botai_Eneolithic.SG
    35 Norway_Viking_o1.SG
    35 Russia_EasternScythian_SouthernUrals.SG
    35 Kazakhstan_Botai_Eneolithic
    36 Russia_Gorokhov_IA_3
    37 Aleut
    39 Russia_Tuva_IA_AldyBel
    39 Russia_IA_3.SG
    41 Kazakhstan_Tasmola_EIA
    41 Kazakhstan_Central_Saka.SG
    43 Russia_Siberia_Lena_EBA_o
    43 Russia_KusnarenkovoKarajakupovo_Medieval.SG
    46 Tatar_Siberian
    47 Russia_BA_Okunevo.SG
    47 Yukagir_Forest
    47 Russia_Bolshoy
    49 Kazakhstan_Central_Steppe_EMBA.SG
    49 Tatar_Siberian_Zabolotniye
    49 Kazakhstan_Kimak.SG
    51 Mansi
    51 Mansi.DG
    52 Chukchi.DG
    52 USA_AK_Prehistoric.SG
    52 Aleut_o
    52 Aleut_o.DG
    55 Altaian_Chelkan
    55 Kazakhstan_ZevakinoChilikta_IA_2.SG
    55 Russia_Gorokhov_IA_1
    56 Tlingit
    58 Khakass_outlier
    59 Tubalar
    60 Canada_MDorset.SG
    60 Kazakhstan_Kipchak2.SG
    60 Shor_Khakassia
    60 Russia_IA_2.SG
    60 Shor_Mountain
    61 Aleut.DG
    61 Tubalar.DG
    61 Kazakh
    64 Selkup
    64 Cree1.DG
    66 Khakass
    66 Ket
    66 Even
    67 Russia_Siberia_Tenisei_EBA
    68 Russia_LBA_2.SG
    68 Russia_LenaRiver_LUP.SG
    72 Cree2.DG
    72 Khakass_Kachin
    72 Altaian
    74 Altaian.DG
    75 Kazakhstan_Hun_Elite_LIA
    75 Enets
    76 Russia_AngaraRiver_Medieval.SG
    76 USA_Alaska_TrailCreek_9000BP.SG
    80 Mongolia_LBA_CenterWest_4
    80 Russia_UstIda_LN.SG
    82 Russia_Kurma_EBA_o.SG
    82 Russia_UstBelaya_Angara_Medieval
    82 Tuvinian
    82 Russia_Karasuk_o1.SG
    83 Even_o.DG
    83 Even_o
    83 USA_Ancient_Beringian.SG
    83 Evenk_FarEast
    83 Russia_Kolyma_M.SG
    84 Russia_UstBelaya_Angara_published
    84 Tofalar
    84 Kazakhstan_Birlik_Tasmola_EIA
    84 Russia_UstBelaya_Angara_o_published
    84 Russia_LenaRiver_N.SG
    85 Russia_AngaraRiver_N.SG
    85 Russia_UstIda_EBA.SG
    85 Russia_UstBelaya_MED.SG
    85 Russia_LakeBaikal_N.SG
    85 Canada_LateDorset.SG
    86 Todzin
    86 Russia_UstBelaya_Angara
    86 Russia_AngaraRiver_BA.SG
    86 Buryat
    86 Russia_Shamanka_EBA.SG
    86 Russia_Kurma_EBA.SG
    87 Russia_Siberia_Lena_EBA
    87 Dolgan
    87 Russia_Siberia_UP
    87 Russia_Buryatia_M.SG
    87 Kazakhstan_Nomad_HP.SG
    87 Russia_UstBelaya_Angara.SG
    87 Russia_LenaRiver_BA.SG
    88 Russia_Buryatia_EIA
    88 Khamnegan
    88 Russia_Yana_Medieval.SG
    89 Russia_LenaRiver_MiddleN.SG
    89 Greenland_Saqqaq.SG
    89 USA_AK_PaleoAleut_published
    89 Mongolia_Khuvsgul_LateMedieval
    89 Russia_LakeBaikal_BA.SG
    89 Kazakhstan_Korgantas_IA
    89 Russia_UstBelaya_EBA.SG
    90 Yakut
    90 Yakut.SDG
    90 Russia_Uelen_IA.SG
    90 Kazakhstan_Nomad_Hun_Sarmatian.SG
    90 Russia_Siberia_Lena_EN
    91 Russia_LenaRiver_EN.SG
    91 Russia_Siberia_Angara_EN
    91 Russia_Buryatia_Xiongnu
    91 Russia_KuengaRiver_N_1.SG
    91 Mongolia_EIA_3
    91 Canada_MDorset_published
    92 Yakut.DG
    92 Itelmen.DG
    92 Russia_Siberia_Irkutsk_EBA
    92 Russia_Ekven_IA.SG
    92 Itelmen
    93 Canada_6500BP.SG
    93 Russia_Uelen_OldBeringSea
    93 Russia_Ekven_OldBeringSea.SG
    93 Russia_Buryatia_PreBronze
    93 Koryak
    93 Chukchi1
    93 Canada_BigBar_5700BP.SG
    93 Russia_Uelen_OldBeringSea_published
    93 USA_AK_PaleoAleut.SG
    94 Russia_Ekven_OldBeringSea
    94 Chipewyan.DG
    94 USA_AK_Ancient_Athabaskan_1100BP.DG
    94 Eskimo_Naukan.DG
    94 USA_AK_Ancient_Athabaskan_1100BP.SG
    94 USA_AK_NeoAleut
    94 Eskimo_Naukan
    94 USA_AK_PaleoAleut
    94 Mongolia_EIA_SlabGrave_1
    94 Chukchi
    94 Canada_Thule.SG
    94 Eskimo_ChaplinSireniki
    94 Russia_Lokomotiv_Eneolithic.SG
    95 Evenk_Transbaikal
    95 USA_AK_Ancient_Athabaskan_1100BP
    95 Yukagir_Tundra
    95 Russia_Shamanka_Eneolithic.SG
    95 Russia_CentralYakutia_LN.SG
    95 Russia_AginBuryat_N.SG
    95 Russia_AngaraRiver_EN.SG
    95 USA_AK_NeoAleut_published
    95 Eskimo_Sireniki.DG
    96 USA_AK_Athabskan.SG
    96 Russia_UstBelaya_Angara_o.SG
    96 Eskimo_Chaplin.DG
    96 Nganasan
    96 Even.DG
    96 Eskimo_Sireniki
    97 Russia_KolymaRiver_LN.SG
    97 Russia_Krasnoyarsk_BA.SG
    97 Russia_Chita_BA.SG
    98 Russia_KuengaRiver_N_2.SG
    98 Oroqen
    98 Russia_KadalinkaRiver_N.SG
    98 Oroqen.SDG
    99 Russia_CentralYakutia_IA.SG
    99 Russia_ArgunRiver_M.SG
    99 Nivh
    99 Ulchi.DG
    99 Oroqen.DG
    99 Ulchi
    100 Negidal
    This finds populations that are closest to the Mari average when multiplied by MDS of FST:

    Code:
    $ printf %s\\n ,,,,,,,,,,,, 19,,,,,,,,,,,, 28,36,,,,,,,,,,, 26,32,36,,,,,,,,,, 26,35,28,21,,,,,,,,, 52,62,50,48,39,,,,,,,, 64,65,76,57,60,82,,,,,,, 114,114,122,110,111,127,76,,,,,, 111,111,123,109,112,130,83,56,,,,, 138,137,154,138,144,161,120,113,105,,,, 179,181,187,177,176,191,146,166,177,217,,, 122,127,124,116,108,121,113,145,151,185,203,, 146,150,150,140,135,141,133,164,170,204,220,41,>k13fst
    $ Rscript -e 't=read.csv("reich.k13.ave",h=F,r=1);fst=as.matrix(as.dist(read.csv("k13fst",h=F)));fst=fst/mean(fst);t2=as.matrix(t)%*%cmdscale(fst,ncol(fst)-1);write.table(round(t2,6),"reich.k13.ave.mds",sep=",",quote=F,col.names=F)'
    $ grep Mari.SG reich.k13.ave.mds|awk -F, 'NR==FNR{for(i=2;i<=NF;i++)a[i]=$i;next}$1{s=0;for(i=2;i<=NF;i++)s+=($i-a[i])^2;print s^.5,$1}' - reich.k13.ave.mds|sort -n|awk '{$1=sprintf("%.2f",$1)}1'|head -n16
    0.00 Mari.SG
    2.70 Udmurt
    3.64 Bashkir.SG
    4.05 Kazakstan_Sargat_IA
    4.70 Finland_Levanluhta
    5.28 Bashkir
    5.35 Russia_Sargat_IA
    5.65 Russia_Chalmny_Varre
    5.88 Besermyan
    6.03 Russia_Karasuk_oRISE.SG
    6.41 Kazakhstan_Tasmola_Saka_IA
    6.73 Kyrgyzstan_AlaiNura_IA
    7.01 Saami.DG
    7.23 Saami.WGA
    7.25 Kyrgyzstan_Saka_IA
    7.40 Kyrgyzstan_TianShan_Saka_o1.SG
    Here's PCAs of samples where the combined percentage of the last four components is less than 20%:




    Code:
    awk -F\\t '$5==0{print$7}' ho.anno|igno|grep -Fv .|grep -v _o|awk -F: 'NR==FNR{a[$0];next}$1 in a' - reich.k13 >modern
    awk -F\\t '$5>0{print$7}' ho.anno|igno|grep -v _o|awk -F: 'NR==FNR{a[$0];next}$1 in a' - reich.k13 >ancient
    Code:
    library(tidyverse)
    library(ggforce)
    
    t=read.csv("modern",header=F,row.names=1)
    
    t=t[rowSums(t[,10:13])<=20,]
    
    fst=as.matrix(as.dist(read.csv("k13fst",header=F)))
    t2=as.matrix(t)%*%cmdscale(fst,ncol(fst)-1)
    
    p0=prcomp(t2)
    pct=paste0(colnames(p0$x)," (",sprintf("%.1f",100*p0$sdev/sum(p0$sdev)),"%)")
    p=as.data.frame(p0$x)
    
    p[,1]=-p[,1]
    p=p/sd(p[,1])
    
    pop=sub(":.*","",rownames(t))
    pop=sub("\\.(SG|DG|SDG|WGA)","",pop)
    
    set.seed(1)
    color=as.factor(sample(seq(1,length(unique(pop)))))
    col=rbind(c(60,80),c(25,95),c(100,70),c(30,70),c(70,50),c(60,100),c(20,50),c(15,40))
    hues=max(ceiling(length(color)/nrow(col)),7)
    pal1=as.vector(apply(col,1,function(x)hcl(seq(15,375,length=hues+1)[1:hues],x[1],x[2])))
    pal2=as.vector(apply(col,1,function(x)hcl(seq(15,375,length=hues+1)[1:hues],ifelse(x[2]>50,.8*x[1],.2*x[1]),ifelse(x[2]>50,.3*x[2],100))))
    
    i=1
    xpc=sym(paste0("PC",i))
    ypc=sym(paste0("PC",i+1))
    
    p[,i]=p[,i]*diff(range(p[,i+1]))/diff(range(p[,i]))
    
    centers=data.frame(aggregate(p,list(pop),mean),row.names=1)
    
    ranges=apply(p,2,function(x)abs(max(x)-min(x)))
    maxrange=max(ranges[c(i,i+1)])
    
    ggplot(p,aes(!!xpc,!!ypc,group=0))+
    ggforce::geom_voronoi_tile(aes(x=!!xpc,y=!!ypc,fill=color[as.factor(!!pop)],color=color[as.factor(!!pop)]),size=.07,max.radius=maxrange/35)+
    geom_label(data=centers,aes(x=!!xpc,y=!!ypc,label=rownames(centers)),color=pal2[color],fill=pal1[color],alpha=.7,size=2,label.r=unit(.1,"lines"),label.padding=unit(.1,"lines"),label.size=.1)+
    labs(x=pct[i],y=pct[i+1])+
    coord_fixed()+
    scale_x_continuous(expand=expansion(.03))+
    scale_y_continuous(expand=expansion(.03))+
    scale_fill_manual(values=pal1)+
    scale_color_manual(values=pal2)+
    theme(
      axis.text=element_blank(),
      axis.ticks=element_blank(),
      axis.ticks.length=unit(0,"pt"),
      axis.title=element_text(color="black",size=8),
      legend.position="none",
      panel.background=element_rect(fill="white"),
      panel.border=element_rect(color="gray90",fill=NA,size=.4),
      panel.grid=element_blank(),
      plot.background=element_rect(fill="white",color=NA)
    )
    
    ggsave(paste0(i,".png"),width=8,height=8)
    Finally below is a heatmap of modern populations with no suffix like .SG or .DG. There are many samples that suffer from the calculator effect, so for example the Scottish average gets 85% North_Atlantic. In order to rearrange the branches of the clustering tree, I used MDS on the FST matrix of K13 in order to plot the 13 components of K13 in 12-dimensional space, and I then plotted the populations in 12-dimensional space by multiplying their component percentages with the matrix produced by MDS, and I used the value of the first dimension as a weight for the function `reorder.hclust`.



    Code:
    library(pheatmap)
    library(vegan) # for reorder.hclust
    library(colorspace) # for hex
    
    t=read.csv("modern",row.names=1,header=F)
    colnames(t)=c("North_Atlantic","Baltic","West_Med","West_Asian","East_Med","Red_Sea","South_Asian","East_Asian","Siberian","Amerindian","Oceanian","Northeast_African","Sub-Saharan")
    
    ave=data.frame(aggregate(t,list(sub(":.*","",rownames(t))),mean),row.names=1)
    ave=ave[rownames(ave)%in%readLines("pop"),]
    
    fst=as.matrix(as.dist(read.csv("k13fst",header=F,check.names=F)))
    ave2=as.matrix(ave)%*%cmdscale(fst,ncol(fst)-1)
    hc=hclust(dist(ave2))
    hc=reorder(hc,prcomp(ave2)$x[,1])
    
    pheatmap::pheatmap(
      ave,
      filename="1.png",
      cluster_cols=F,
      clustering_callback=function(...)hc,
      legend=F,
      cellwidth=16,
      cellheight=16,
      treeheight_row=150,
      treeheight_col=80,
      fontsize=8,
      border_color=NA,
      display_numbers=T,
      number_format="%.0f",
      fontsize_number=7,
      number_color="black",
      colorRampPalette(hex(HSV(c(210,210,130,60,40,20,0),c(0,rep(.5,6)),1)))(256)
    )
    Last edited by Komintasavalta; 11-04-2021 at 02:21 AM.

  8. #58
    Veteran Member
    Join Date
    Jul 2019
    Last Online
    03-11-2024 @ 04:25 PM
    Ethnicity
    Unknown
    Country
    Antarctica
    Gender
    Posts
    3,910
    Thumbs Up/Down
    Received: 3,464/7
    Given: 1,535/1

    0 Not allowed! Not allowed!

    Default

    I'm looking for a study on modern DNA, whose G25 results were also published. It included a few hundred modern samples, including a dozen Slovenians. Does anybody know what it is?

    I thought it was this one, but I can't find those Slovenians in the list anymore?
    https://anthrogenica.com/showthread....Sample-for-G25

  9. #59
    Banned
    Join Date
    Sep 2019
    Last Online
    07-29-2023 @ 05:42 PM
    Location
    --
    Meta-Ethnicity
    --
    Ethnicity
    ---
    Ancestry
    --
    Country
    United States
    Region
    Quebec City
    Y-DNA
    --
    mtDNA
    --
    Taxonomy
    --
    Politics
    --
    Religion
    -+
    Relationship Status
    Single
    Gender
    Posts
    10,047
    Thumbs Up/Down
    Received: 6,248/169
    Given: 1,440/2

    0 Not allowed! Not allowed!

    Default

    Quote Originally Posted by Komintasavalta View Post
    AFAIK, DIYDodecad only has Linux and Windows binaries, and I didn't want to install a VM, so I wasn't able to use it before. But I now found this Python-based alternative to it: https://github.com/stevenliuyi/admix.
    So, you would not run binaries in your main system outside a VM but you will run open source pip python packages, blindly trusting them, without code auditing it for security when it is not even an official debian etc... package etc ?

    Are you trusting open source blindly? Then you're in for a world of hurt!

    Published on 2021-02-10.

    So, you normally do pip install foo, or composer install foo, or npm install foo, or perhaps go get foo, and you never read the source code of the package you just pulled down? Well guess what, that's one (almost) sure way to blow up your project!

    Pulling down open source code as a dependency without ever reading the code and verifying that it doesn't contain any backdoors or other malicious content has become one of the easiest ways to introduce malicious content into a code base.

    All you have to do is this:

    Fix some code and create a pull request.
    Fix some more code, perhaps add a new feature, and create more pull requests.
    Upstream "rewards" you with commit access.
    Keep a low profile for a while longer.
    Make a few mistake to check how fast "mistakes" are discovered.
    Create some malicious code disguised as a bug, an honest programming mistake.
    Repeat.

    Of course you cannot validate every single line of code in every open source projects you might use, but I cannot fathom how just about everyone today are completely and blindly trusting every package out there. This is a madness and level of ignorance and naivety in the software industry not previously seen.

    ...

    https://www.unixsheikh.com/articles/...d-of-hurt.html

    Don't get me wrong the code could be fine but I don't care enough to code audit it when I can just use GEDmatch, vahaduo , DNAgenics, Genoplot instead but your reasoning sounds retarded.

  10. #60
    Veteran Member
    Join Date
    Jul 2014
    Last Online
    07-31-2025 @ 08:40 PM
    Meta-Ethnicity
    Indo-European, Slavic
    Ethnicity
    Russian (privately view myself as Aryan)
    Country
    Brunei
    Region
    Russian Turkestan General Governorship
    Y-DNA
    R1a-Z282-YP350
    Religion
    Orthodox Christian
    Gender
    Posts
    24,264
    Thumbs Up/Down
    Received: 15,693/315
    Given: 8,913/358

    1 Not allowed! Not allowed!

    Default

    Can you run some of those Cardona samples? Dodecad K12b would suffice.

    EDIT
    That post on Anthrogenica by David Bush links to a different study
    https://onlinelibrary.wiley.com/doi/...002/ajhb.23194
    Siberian genetic diversity reveals complex origins of the Samoyedic-speaking populations
    Tatiana M. Karafet, Ludmila P. Osipova, Olga V. Savina, Brian Hallmark, Michael F. Hammer
    Last edited by Leto; 11-03-2021 at 04:24 PM.

Thread Information

Users Browsing this Thread

There are currently 1 users browsing this thread. (0 members and 1 guests)

Similar Threads

  1. Replies: 27
    Last Post: 07-30-2023, 03:57 PM
  2. Replies: 131
    Last Post: 07-24-2023, 07:13 PM
  3. Replies: 42
    Last Post: 10-24-2020, 04:41 PM

Bookmarks

Posting Permissions

  • You may not post new threads
  • You may not post replies
  • You may not post attachments
  • You may not edit your posts
  •