2


Thumbs Up/Down |
Received: 4,862/123 Given: 2,945/0 |
K12b: https://pastebin.com/raw/PMTtnzZn
K13: https://pastebin.com/raw/Pe0wM1ea
Yeah sorry, that was the right study. The files at Anthrogenica contain all 651 samples from this dataset: https://www.ncbi.nlm.nih.gov/geo/que...i?acc=GSE73996. Its title is "The genetic basis of adaptation to climatic stress in Siberian indigenous populations", so I confused it with Cardona et al. 2014, "Genome-Wide Analysis of Cold Adaptation in Indigenous Siberian Populations". But I think the dataset is from an unpublished paper whose samples were later used in the paper you linked to.
Thumbs Up/Down |
Received: 15,693/315 Given: 8,913/358 |
Thank you for running them, I see a few valuable populations in that spreadsheet!I'm processing them for Dodecad and maybe a couple for K13 too.
Thumbs Up/Down |
Received: 4,862/123 Given: 2,945/0 |
Here's how you can use my K13 datasheet for the Reich dataset to make a polygonal diagram where each corner of the polygon represents one component:
Here you can see that CentralYakutia_IA (yak030) has even higher Siberian than the Nganasan average. The yak030 sample is missing from G25, but in the Reich dataset, it's the closest ancient sample to Nganasans:Code:library(tidyverse) library(ggforce) library(colorspace) t=read.csv("https://drive.google.com/uc?export=download&id=15Mvba7Bw07VtixiBO_EctOhPPECGzZC9",row.names=1,check.names=F) t=t/100 fst=as.matrix(as.dist(read.csv(header=F,text=",,,,,,,,,,,, 19,,,,,,,,,,,, 28,36,,,,,,,,,,, 26,32,36,,,,,,,,,, 26,35,28,21,,,,,,,,, 52,62,50,48,39,,,,,,,, 64,65,76,57,60,82,,,,,,, 114,114,122,110,111,127,76,,,,,, 111,111,123,109,112,130,83,56,,,,, 138,137,154,138,144,161,120,113,105,,,, 179,181,187,177,176,191,146,166,177,217,,, 122,127,124,116,108,121,113,145,151,185,203,, 146,150,150,140,135,141,133,164,170,204,220,41,"))) t=t[!grepl("\\.REF|rel\\.|fail\\.|\\.contam|Ignore_|_dup|_contam|_lc|_father|_mother|_son|_daughter|_brother|_sister|_relative|_sibling|_twin|Neanderthal|Denisova|Vindija_light|Gorilla|Macaque|Marmoset|Orangutan|Primate_Chimp|hg19ref|_o",rownames(t)),] rownames(t)=%sub("\\.(SG|DG|SDG|WGA|WGC)|_published","",rownames(t)) t=data.frame(aggregate(t,list(sub(":.*","",rownames(t))),mean),row.names=1,check.names=F) mds=as.matrix(t)%*%cmdscale(fst,ncol(fst)-1) t=as.data.frame(cbind(t[,2],t[,9],t[,8],rowSums(t[,c(1,3:7,10:13)]))) names(t)=c("Baltic","Siberian","East_Asian","Other") start=ifelse(ncol(t)==4,.25,0) corners=sapply(c(sin,cos),function(x)x(head((start+seq(0,2,length.out=ncol(t)+1))*pi,-1))) corners=corners*min(2/diff(apply(corners,2,range))) corners[,2]=corners[,2]-mean(range(corners[,2])) xy=as.data.frame(as.matrix(t)%*%corners) grid=as.data.frame(rbind(cbind(corners,rbind(corners[-1,],corners[1,])),cbind(corners,matrix(apply(corners,2,mean),ncol=2,nrow=ncol(t),byrow=T)))) seg=lapply(1:3,function(i)as.matrix(dist(mds))%>%apply(1,function(x)unlist(xy[names(sort(x)[i]),],use.names=F))%>%t%>%cbind(xy))%>%do.call(rbind,.)%>%setNames(paste0("V",1:4)) k=as.factor(cutree(hclust(dist(mds)),32)) set.seed(1) hue=seq(0,360,length.out=nlevels(k)+1)%>%head(-1)%>%sample() pal1=hex(colorspace::HSV(hue,.5,1)) pal2=hex(colorspace::HSV(hue,.3,1)) angle=head(seq(360,0,length.out=ncol(t)+1),-1) angle=ifelse(angle>90&angle<=270,angle+180,angle) ggplot(xy,aes(x=V1,y=V2))+ geom_polygon(data=as.data.frame(corners),fill="gray25")+ # geom_text(data=as.data.frame(corners),aes(x=1.04*V1,y=1.04*V2),label=colnames(t),size=3.2,angle=angle,color="gray85")+ geom_text(data=as.data.frame(corners),aes(x=V1,y=V2+sign(V2)*.02),vjust=(1-corners[,2])/2,hjust=(1+corners[,1])/2,label=colnames(t),size=3.2,color="gray85")+ geom_segment(data=grid,aes(x=V1,y=V2,xend=V3,yend=V4),color="gray30",size=.4)+ ggforce::geom_mark_hull(aes(group=!!k,color=!!k,fill=!!k),concavity=1000,radius=unit(.15,"cm"),expand=unit(.15,"cm"),alpha=.15,size=.1)+ geom_segment(data=seg,aes(x=V1,y=V2,xend=V3,yend=V4),color="gray10",size=.25)+ geom_point(aes(color=k),size=.5)+ geom_text(aes(label=rownames(xy),color=!!k),size=2.2,vjust=-.6)+ coord_fixed(xlim=c(-1,1),ylim=c(-1,1))+ scale_fill_manual(values=pal1)+ scale_color_manual(values=pal2)+ theme( axis.text=element_blank(), axis.ticks=element_blank(), axis.title=element_blank(), legend.position="none", panel.background=element_rect(fill="gray20"), panel.grid=element_blank(), plot.background=element_rect(fill="gray20",color=NA,size=0), plot.margin=margin(0,0,0,0) ) ggsave("1.png",width=11,height=11)
Here some populations like Scottish and BedouinB are outliers, because their samples suffer from the calculator effect:
This shows all ancient and modern populations:
![]()
Last edited by Komintasavalta; 11-04-2021 at 03:39 AM.
Thumbs Up/Down |
Received: 15,693/315 Given: 8,913/358 |
Thumbs Up/Down |
Received: 4,862/123 Given: 2,945/0 |
@Lucas and @michal3141: Where can I get the FST matrix for your K47 and K25 calculators? I'm using Mantel's test to check if high-K calculators produce higher correlation with f2 distance than low-K calculators.
I also want to test some very low-K calculators like Gedrosia K3, but I need its .alleles and .F files and its FST matrix.
Or can some Windows user just post the .F and .alleles files for all calculators from Admixture Studio? I also need MDLP World 22.
Last edited by Komintasavalta; 11-08-2021 at 07:45 PM.
Thumbs Up/Down |
Received: 4,862/123 Given: 2,945/0 |
I now also ran Eurogenes K13 for all samples in the 1240K version of the Reich dataset: https://drive.google.com/file/d/15Mv...EctOhPPECGzZC9.
It should produce more accurate results particularly for ancient samples with low SNP count, because the 1240K version has about two times as many SNPs as the 1240K+HO version, but it has over 3 times as many SNPs that overlap with Eurogenes K13:
For samples that were included in both versions, the average in admixture percentages was 1.0 percentage points. But for samples with less than 200,000 SNPs, it was common for the difference to be over 2 percentage points:Code:$ wget https://reichdata.hms.harvard.edu/pub/datasets/amh_repo/curated_releases/V50/V50.0/SHARE/public.dir/v50.0_{HO,1240K}_public.snp $ for x in 1240K HO;do cut -d\ -f1 /usr/local/lib/python3.9/site-packages/admix/data/K13.alleles|LC_ALL=C sort|comm -12 <(awk '{print$1}' v50.0_${x}_public.snp|LC_ALL=C sort) -|wc -l|echo "$(cat) out of $(wc -l< v50.0_${x}_public.snp) SNPs overlap with $x";done 177354 out of 1233013 SNPs overlap with 1240K 52770 out of 597573 SNPs overlap with HO
Here's a PCA of samples that are at least 8000 years old and that have at least 100,000 SNPs:
This makes population averages where samples with less than 100,000 SNPs are excluded:
I think these calculators would give more accurate results with low-SNP ancient samples if they just included all SNPs from the 1240K dataset with no LD pruning. But out of the calculators that come with the Python admix script, even the calculators with the highest SNP count only include about 200,000 SNPs:Code:curl -LsO https://reichdata.hms.harvard.edu/pub/datasets/amh_repo/curated_releases/V50/V50.0/SHARE/public.dir/v50.0_1240K_public.anno curl -Lso reich.1240k.k13 'https://drive.google.com/uc?export=download&id=15Mvba7Bw07VtixiBO_EctOhPPECGzZC9' tav()(awk '{n[$1]++;for(i=2;i<=NF;i++){a[$1,i]+=$i}}END{for(i in n){o=i;for(j=2;j<=NF;j++)o=o FS sprintf("%f",a[i,j]/n[i]);print o}}' "FS=${1-$'\t'}") awk -F\\t '$21>=1e5{print$2}' v50.0_1240K_public.anno|awk -F'[:,]' 'NR==FNR{a[$0];next}$2 in a' - reich.1240k.k13|sed 's/:[^,]*//'|tav ,|sort>reich.1240k.k13.ave
Code:$ cd /usr/local/lib/python3.9/site-packages/admix/data/ $ wc -l *.alleles|sort -n 27187 Africa9.alleles 35648 AncientNearEast13.alleles 38496 puntDNAL.alleles 76261 MichalK25.alleles 76267 K47.alleles 92632 KurdishK10.alleles 101647 K7AMI.alleles 101647 K8AMI.alleles 112117 TurkicK11.alleles 118536 MDLPK27.alleles 159620 EUtest13.alleles 159620 Jtest14.alleles 164990 Eurasia7.alleles 165688 K13M2.alleles 165688 K14M1.alleles 165688 K18M4.alleles 165688 K25R1.alleles 165688 K36.alleles 165688 K7M1.alleles 166255 globe10.alleles 166255 globe13.alleles 166770 K12b.alleles 166770 K7b.alleles 169131 weac2.alleles 170288 E11.alleles 170822 world9.alleles 182705 K13.alleles 184719 K15.alleles 188173 HarappaWorld.alleles
Last edited by Komintasavalta; 11-13-2021 at 04:56 AM.
Thumbs Up/Down |
Received: 18,327/37 Given: 18,898/0 |
You can post mumbo gumbo graphs all day but you'll never have the out of the box thinking to create a calculator like this: https://www.theapricity.com/forum/sh...lator-(Scaled)
The east shifted mind can't comprehend my level of humor. Feel free to build off my western ideas.
Thumbs Up/Down |
Received: 18,327/37 Given: 18,898/0 |
It's up to you to take this whole game to the next level. Don't get lost in the minutiae. You need more WOG-like big picture thinking.
Thumbs Up/Down |
Received: 3,464/7 Given: 1,535/1 |
could you run this trough k36?
https://easyupload.io/i17wjl
Thumbs Up/Down |
Received: 4,862/123 Given: 2,945/0 |
There were some indel alleles like rs3831308 (TCCTGCCCTACCCA), so I got this error: "Error: --recode 23 cannot be used with multi-character allele names." Therefore I excluded all alleles with multi-character names:Code:EG600001,0,0,0,0,0,8.29,0,0,6.46,0,12.16,1.37,13.16,8.97,3.07,10.33,0,8.52,0,2.51,0,6.92,0,10.34,.91,0,0,0,0,0,0,0,3.15,0,3.82,0 EG600002,0,0,0,.71,0,3.64,0,0,10.4,0,19.84,.63,12.07,7.0,4.96,3.47,0,9.02,0,4.06,0,3.62,6.65,9.05,0,0,.03,0,0,0,0,0,2.68,0,0,2.18 EG600003,0,0,1.06,5.43,0,6.28,0,0,5.6,0,22.26,0,14.45,9.11,.38,2.49,0,9.73,0,0,0,3.05,8.77,8.26,0,.05,0,0,0,0,0,0,2.86,0,.22,0 EG600004,0,1.5,.56,1.62,0,4.55,0,0,9.56,0,18.25,6.78,6.77,12.39,.86,9.7,0,5.5,0,0,0,5.9,3.78,6.42,0,.06,0,0,0,0,0,0,2.1,0,0,3.69 EG600005,0,0,0,.34,0,7.82,0,0,8.96,0,14.55,0,17.11,9.36,3.83,5.69,0,13.86,0,1.67,0,3.46,3.14,10.2,0,0,0,0,0,0,0,0,0,0,0,0 EG600006,0,0,.49,1.25,0,8.49,0,0,3.91,0,22.96,.98,16.9,10.69,6.73,5.06,0,5.15,0,0,0,6.08,0,8.97,0,0,0,0,0,0,0,0,.12,0,1.16,1.07 EG600007,0,0,1.85,3.48,0,10.37,0,0,9.23,0,16.16,1.92,13.73,6.82,4.78,5.59,0,5.51,0,3.03,0,3.57,5.14,6.0,0,0,0,0,0,0,0,0,.54,0,.56,1.73 EG600008,0,0,.6,3.1,0,6.59,0,0,4.07,0,17.74,6.13,8.88,13.1,0,9.98,0,10.45,0,0,.75,3.7,4.28,4.82,0,0,0,0,0,.18,.95,0,2.48,0,0,2.18 EG600009,.02,.7,.41,4.02,0,6.38,0,0,5.17,0,19.08,1.29,14.11,6.67,3.47,11.09,0,6.95,0,0,0,6.26,.74,8.25,0,0,0,0,0,0,0,0,1.53,0,3.08,.8 EG600010,0,0,2.92,.26,0,7.38,0,0,8.49,0,19.72,4.7,11.26,9.62,3.8,4.25,0,11.69,0,1.05,.22,4.54,2.46,5.72,0,0,0,0,0,0,0,0,1.21,0,0,.72 EG600011,0,0,0,0,0,8.4,0,.01,7.35,0,19.67,0,9.93,8.62,2.11,7.89,0,14.29,0,0,0,5.66,3.53,3.4,0,0,0,0,.2,0,0,0,0,0,5.29,3.65 EG600012,0,0,1.29,3.78,0,4.48,0,0,6.21,0,21.14,0,13.77,8.39,.84,10.33,0,7.13,0,.94,0,3.78,2.01,11.73,0,0,0,0,0,0,0,0,2.27,0,1.91,0 EG600013,0,0,2.94,.5,0,8.8,0,0,12.44,0,22.06,0,10.45,13.01,4.09,3.87,0,3.37,0,0,0,12.04,.87,3.35,0,0,0,0,0,0,0,0,1.71,0,.51,0 EG600014,0,0,.91,.18,0,6.11,0,0,7.41,0,26.3,0,10.05,7.8,5.19,8.02,0,2.7,0,.21,0,8.22,4.14,9.38,0,0,0,0,0,0,0,0,0,0,2.34,1.05 EG600015,.59,0,1.4,1.81,0,7.42,0,0,6.49,0,26.37,0,16.12,10.71,2.18,4.85,0,2.55,.04,0,0,7.61,1.53,7.82,0,.22,0,0,0,0,0,0,1.89,.01,0,.38 EG600016,0,0,0,4.1,0,8.61,0,0,4.45,0,22.21,0,14.25,14.32,2.1,6.3,0,3.59,0,0,0,2.89,5.02,8.03,0,0,0,0,0,.49,0,0,.05,0,2.93,.65 EG600017,0,0,0,1.32,0,5.34,0,0,5.37,0,25.8,0,17.02,12.76,1.51,2.75,0,8.14,0,0,0,.83,3.56,11.23,0,0,0,0,0,0,0,0,4.36,0,0,0 EG600018,0,0,.33,1.66,0,8.83,0,0,8.26,0,20.28,0,12.11,5.89,3.98,4.53,0,12.44,0,.88,0,5.35,3.85,5.33,0,0,0,0,0,0,1.08,0,2.64,0,0,2.56 EG600019,0,0,6.44,1.26,0,7.77,0,2.74,3.14,1.62,16.69,0,10.57,13.85,7.59,1.37,0,0,0,0,0,3.13,4.79,5.28,0,0,0,.11,4.53,0,2.04,0,3.62,0,3.45,0 EG600020,0,.44,1.4,1.98,0,3.03,0,0,13.16,0,20.95,0,12.25,14.97,.65,9.09,0,8.48,0,0,0,2.58,5.02,4.33,0,0,0,0,0,0,0,0,1.67,0,0,0 EG600021,0,0,0,.45,0,6.3,0,0,6.43,0,29.09,0,20.5,8.12,4.5,3.72,0,4.26,0,0,0,8.15,.8,4.75,0,0,0,0,0,0,0,0,2.94,0,0,0 EG600022,0,0,0,0,0,7.18,0,0,10.02,0,24.61,0,16.59,7.85,2.74,6.84,0,8.36,0,1.09,.38,5.11,0,5.21,0,0,0,0,0,0,.12,0,2.57,0,1.14,.18 EG600023,0,0,0,.24,0,5.06,0,0,7.67,0,25.24,0,14.04,13.24,4.09,5.81,0,6.27,0,0,0,4.06,1.59,9.17,0,0,0,0,0,0,0,0,1.24,0,2.27,0 EG600024,0,0,0,.84,0,7.79,0,0,9.44,0,19.08,0,15.42,7.69,7.78,5.91,0,0,0,0,0,6.23,4.0,10.2,0,0,0,0,0,.47,.74,0,2.37,0,2.04,0 EG600025,0,0,0,.83,0,5.25,0,0,5.19,0,23.27,0,16.29,14.8,0,7.54,0,5.97,0,0,0,7.33,3.74,5.61,0,0,0,0,0,0,0,0,4.02,0,.16,0 EG600026,0,0,0,1.71,.06,6.04,0,0,3.39,0,24.88,1.97,20.42,7.22,3.28,6.43,0,2.68,0,0,0,5.85,.97,10.11,0,0,0,0,0,.11,0,0,2.83,.09,0,1.97 EG600027,.47,0,0,0,0,7.36,0,0,8.3,0,22.74,0,8.08,9.89,6.7,5.15,0,10.41,0,0,0,3.85,5.99,7.41,0,0,0,.12,0,0,0,0,0,0,1.85,1.68 EG600028,0,0,0,1.2,0,7.47,0,0,7.21,0,26.37,.53,21.36,8.91,4.52,2.08,0,5.41,0,0,0,4.08,0,7.41,0,0,0,0,0,0,.86,0,.61,0,1.97,0 EG600029,0,0,0,.62,0,9.07,0,0,8.45,.3,22.62,0,22.53,11.27,.71,0,0,8.62,0,0,0,3.01,3.85,5.01,0,0,0,0,.05,0,0,.92,2.66,0,.3,0 EG600030,0,0,0,0,0,8.51,0,0,5.56,0,17.19,0,15.66,11.54,2.97,7.25,0,13.48,0,0,0,6.02,2.01,7.77,0,0,0,0,0,0,.72,0,1.32,0,0,0 EG600031,0,0,0,1.65,0,7.98,0,0,5.29,0,21.59,1.1,16.54,8.61,6.01,2.71,0,7.09,0,0,0,10.83,1.06,6.45,0,.09,0,.11,0,0,.19,0,2.68,0,0,.01 EG600032,0,2.38,1.12,.26,0,6.33,0,0,7.83,0,18.98,0,14.71,7.7,2.94,2.88,0,14.73,0,0,0,4.23,4.41,6.16,0,0,0,0,0,0,0,0,2.77,0,1.2,1.35 EG600033,0,.33,.81,3.57,0,7.57,0,0,10.23,0,22.05,2.39,15.02,7.26,5.0,8.41,0,2.48,0,0,0,6.85,.25,4.74,0,0,0,0,0,0,0,0,2.21,0,0,.83 EG600034,0,0,4.52,0,0,8.66,0,0,10.73,0,19.37,1.12,15.19,11.96,5.64,6.58,0,.39,0,0,0,3.32,0,8.48,0,0,0,0,0,0,1.11,0,1.25,0,0,1.69 EG600035,0,.01,.19,2.3,0,8.59,0,0,4.96,0,12.64,2.0,12.55,8.44,4.87,1.91,0,6.97,0,2.25,0,5.54,3.75,11.33,0,0,0,0,0,0,0,0,2.87,0,2.93,5.92 EG600036,0,0,1.12,1.09,0,7.47,0,0,5.18,0,21.21,.83,11.56,10.05,3.86,9.75,0,8.16,0,0,0,7.16,3.23,5.06,0,0,.12,0,0,0,1.97,0,.83,0,.8,.54 EG600037,0,0,0,0,0,7.83,0,0,8.9,0,21.96,0,19.54,12.92,2.39,9.63,0,3.81,0,0,0,5.83,0,4.57,0,.14,0,.25,0,0,0,0,1.83,0,0,.4 EG600038,0,0,0,.53,0,11.13,0,0,8.81,0,23.46,0,19.35,8.61,2.33,3.37,0,6.67,0,0,0,0,1.68,10.7,0,0,0,0,0,0,.71,0,2.67,0,0,0 EG600039,0,0,0,.37,0,6.98,0,0,4.94,0,21.86,0,19.76,13.01,5.79,6.35,0,0,0,0,0,6.73,2.56,7.16,0,0,0,0,0,0,0,0,4.38,.1,0,0 EG600040,0,0,0,0,0,10.52,0,0,7.28,0,22.62,0,18.88,16.0,1.48,2.67,0,1.86,0,0,0,5.18,.14,9.35,0,0,0,0,0,0,0,0,4.01,0,0,0 EG600041,0,0,.13,1.52,0,4.38,0,0,5.34,0,28.89,0,16.55,13.63,2.46,8.55,0,.81,0,0,0,9.26,.59,6.13,0,.03,0,0,0,0,0,0,1.25,0,0,.47 EG600042,0,0,0,0,0,6.05,0,0,9.69,0,20.47,0,17.01,10.34,2.83,8.34,0,5.61,0,0,0,8.31,0,7.03,0,0,0,0,0,0,1.86,0,2.44,0,0,0 EG600043,0,0,0,1.16,0,6.47,.01,0,6.07,0,24.21,0,15.66,10.95,3.0,6.29,0,12.64,0,0,.56,2.63,.94,7.25,0,0,0,0,0,0,0,0,1.68,0,0,.48 EG600044,0,0,0,2.59,0,2.51,0,0,7.83,0,24.65,0,18.8,12.77,3.6,0,0,2.09,0,0,.71,8.46,0,9.96,0,.36,0,0,0,0,0,0,2.88,0,0,2.78 EG600045,0,0,0,1.12,0,9.91,0,0,4.63,0,25.14,0,19.95,7.3,4.8,1.31,0,2.92,0,0,0,6.47,4.41,9.19,0,.15,0,0,0,0,0,0,0,0,2.11,.6 EG600046,0,0,0,.19,0,6.23,0,0,6.56,0,23.31,4.43,16.49,11.93,1.95,8.52,0,4.31,0,0,0,5.27,2.78,5.74,.14,0,0,0,0,0,0,0,2.15,0,0,0 EG600047,.21,0,.68,1.41,0,9.36,0,0,5.57,0,25.88,0,15.97,7.86,5.05,11.78,0,6.58,0,0,0,4.15,.63,1.45,0,0,0,0,0,0,0,0,2.08,0,1.34,0 EG600048,0,5.3,3.88,.22,0,2.78,0,0,6.21,0,2.67,15.5,4.45,0,4.4,9.73,0,14.57,0,11.56,2.22,1.35,5.81,1.3,.01,.59,0,0,0,0,0,.03,0,0,2.19,5.23 EG600049,0,0,0,.78,0,8.15,0,0,6.93,0,26.41,0,14.29,11.78,0,9.19,0,3.79,0,0,0,9.89,.41,7.12,0,0,0,0,0,0,0,0,1.27,0,0,0 EG600050,0,0,0,2.91,.18,6.9,0,0,5.47,0,21.73,0,19.81,7.99,6.55,3.11,0,7.39,0,0,0,6.98,1.32,6.78,0,0,0,0,0,0,1.45,0,1.44,0,0,0 EG600051,0,0,0,.7,0,4.34,0,0,5.58,0,21.43,0,18.99,14.01,2.69,4.92,0,11.37,0,1.11,0,4.04,0,8.01,0,.18,0,0,0,1.2,0,0,.38,0,1.04,0 EG600052,0,0,.28,.36,0,7.68,0,0,8.73,0,27.03,0,18.99,16.63,1.95,0,0,3.38,0,0,0,7.41,1.19,4.85,0,0,0,0,0,0,0,0,.96,0,0,.56 EG600053,0,0,0,0,0,6.17,0,0,4.94,0,23.15,0,16.83,13.45,9.06,6.64,0,10.77,0,0,0,1.93,1.8,4.48,0,0,0,0,0,0,0,0,.26,0,0,.52 EG600054,0,0,.4,.62,0,9.57,0,0,8.86,0,22.29,1.11,20.05,12.47,1.09,2.25,0,.18,0,0,0,8.59,2.77,7.57,0,0,0,0,0,0,0,0,1.82,0,.36,0 EG600055,0,0,0,1.41,0,8.44,0,0,6.32,0,25.39,.36,19.84,10.89,2.14,6.25,0,2.16,0,0,0,7.02,0,7.06,0,0,0,0,0,0,1.34,0,1.38,0,0,0 EG600056,0,0,0,1.19,0,5.18,0,0,10.18,0,24.72,0,19.6,13.36,6.0,0,0,2.07,0,0,0,7.15,2.63,5.9,0,0,0,0,0,0,0,0,1.59,0,.42,0 EG600057,0,.24,0,.45,0,5.26,0,0,6.84,0,26.78,0,15.78,15.42,3.94,4.2,0,6.14,0,0,0,5.93,0,4.75,0,0,0,0,0,0,1.75,0,2.52,0,0,.01 EG600059,0,0,0,1.83,0,6.11,0,0,6.16,0,28.99,.41,13.19,10.05,2.72,3.64,0,6.18,0,0,0,3.87,0,9.81,0,.08,0,0,0,0,0,0,4.12,0,1.83,1.02 EG600060,0,0,.45,0,0,10.7,.04,0,10.27,0,26.71,0,15.63,14.23,2.17,5.04,0,1.17,0,0,0,6.85,.25,5.21,0,0,0,0,0,0,0,0,0,0,1.27,0 EG600061,0,0,0,0,0,13.3,0,0,3.91,0,18.97,0,20.62,3.63,0,6.48,0,11.39,0,0,0,6.89,.37,7.16,0,0,0,0,0,0,0,0,1.27,0,4.54,1.46 EG600062,0,0,1.56,2.13,0,10.67,0,0,8.7,0,24.43,0,12.23,8.81,2.8,7.63,0,7.27,0,0,0,3.36,0,5.39,0,0,0,0,0,0,2.5,0,1.03,0,1.48,0 EG600063,0,0,0,0,0,5.0,0,0,5.12,0,27.06,0,14.4,15.15,3.96,2.16,0,7.74,0,0,0,9.51,2.59,5.92,0,0,0,0,0,0,0,0,.21,0,0,1.19 EG600064,.06,.63,0,.58,.07,9.66,0,0,7.17,0,20.17,0,14.54,9.5,3.11,5.74,0,10.21,0,0,0,6.27,0,7.84,0,0,.01,0,0,0,0,0,2.75,0,0,1.68 EG600065,0,0,0,0,0,9.3,0,0,3.72,0,22.82,0,16.1,11.51,2.42,5.03,0,10.13,0,0,0,3.74,0,9.84,0,0,0,0,0,0,2.61,0,1.48,.2,0,1.08 EG600066,0,0,0,.22,0,5.44,0,0,8.61,0,24.52,0,19.73,12.56,.23,0,0,7.96,0,0,0,4.44,3.1,9.58,0,0,0,0,0,0,0,0,3.6,0,0,0 EG600067,0,0,0,0,0,9.99,0,0,4.8,0,25.88,0,22.04,12.71,2.69,2.45,0,0,0,0,0,7.0,0,9.01,0,0,.16,0,0,0,0,0,3.26,0,0,0 EG600068,0,0,0,.14,0,5.29,0,0,6.37,0,24.22,0,22.43,14.03,2.53,7.83,0,0,0,0,0,7.84,2.22,6.79,0,0,0,0,0,0,0,0,.31,0,0,0 EG600069,0,0,.23,.6,0,9.34,0,0,6.78,0,25.99,0,17.71,12.05,1.81,4.44,0,2.17,0,0,0,8.61,1.99,6.78,0,0,0,0,0,0,0,0,1.5,0,0,0 EG600070,.2,0,0,3.09,0,2.65,0,0,7.06,0,23.35,0,22.34,14.0,4.97,1.8,0,2.35,0,0,0,6.7,6.98,2.87,0,.02,0,0,0,0,0,0,1.63,0,0,0 EG600071,.43,0,0,2.92,0,3.85,0,0,7.59,0,27.27,0,15.29,11.87,2.93,4.96,0,.75,0,0,0,5.75,2.62,7.44,0,0,0,0,0,0,.44,0,2.6,0,1.22,2.06 EG600072,0,0,0,2.43,0,6.4,.13,0,8.4,0,23.46,0,17.65,10.12,1.78,2.22,0,12.91,0,0,0,4.87,.09,6.97,0,.52,0,0,0,0,0,0,2.06,0,0,0 EG600073,0,0,0,.2,0,8.08,0,.27,8.32,0,15.28,0,17.96,15.92,2.9,2.78,0,3.89,.15,0,0,4.53,2.68,7.6,0,0,0,0,2.23,0,1.51,.18,4.22,0,0,1.28 EG600074,0,0,0,2.01,0,6.46,0,0,6.33,0,23.27,0,17.84,13.23,.88,7.65,0,6.35,0,0,0,2.83,.52,7.37,0,.8,0,0,0,.12,2.13,0,2.2,0,0,0 EG600075,0,0,0,0,0,8.9,0,0,6.02,0,27.26,0,22.03,8.33,1.06,1.98,0,0,0,0,0,5.39,3.29,11.06,0,0,0,0,0,0,0,0,4.67,0,0,0 EG600076,0,0,2.69,2.68,0,10.05,0,0,5.64,0,22.8,.12,9.41,8.22,3.47,11.6,0,5.8,0,0,.11,1.01,4.8,8.96,0,.18,0,0,0,0,0,0,2.04,0,.41,0 EG600077,0,0,0,.47,0,9.95,0,0,9.42,0,21.62,0,18.43,16.89,3.62,7.58,0,0,0,0,0,5.03,.74,4.73,0,.34,0,0,0,0,0,0,.61,0,.16,.42 EG600078,0,0,0,.78,0,8.72,0,0,9.15,0,23.78,0,19.26,10.16,4.49,10.73,0,.99,0,0,0,9.02,0,1.81,0,.42,0,0,0,.69,0,0,0,0,0,0 EG600079,.17,0,0,1.76,0,8.69,0,0,10.3,0,26.45,0,14.26,13.39,3.44,0,0,6.09,0,.49,0,7.76,1.37,5.84,0,0,0,0,0,0,0,0,0,0,0,0 EG600080,0,0,1.62,1.01,0,8.31,0,0,9.2,0,27.47,0,15.54,14.92,.9,5.0,0,3.61,0,0,0,3.38,.23,6.9,0,0,0,0,0,0,0,0,.85,0,1.07,0 EG600081,0,0,0,4.3,0,8.59,.3,0,8.45,0,22.38,1.78,18.6,10.5,5.26,0,0,2.52,0,0,.05,9.9,.68,4.18,0,0,0,0,0,.16,.9,0,1.1,.36,0,0 EG600082,.64,0,0,2.11,0,6.46,0,0,4.08,0,24.5,1.21,16.49,11.86,.53,5.62,0,9.56,0,0,0,3.67,0,11.34,0,0,0,0,0,0,0,0,1.63,.31,0,0 EG600083,0,0,0,1.88,0,8.43,0,0,10.54,0,19.66,0,20.56,13.31,3.45,6.51,0,5.29,0,.29,0,4.57,0,4.27,0,0,0,0,0,0,.01,0,.24,0,1.0,0 EG600084,0,0,0,.2,0,8.47,0,0,6.55,0,22.98,0,18.35,14.68,1.95,4.11,0,4.47,0,0,0,7.31,1.42,6.88,0,.08,0,0,0,0,.58,0,1.82,.14,0,0 EG600085,0,0,0,.85,0,7.88,0,0,6.71,0,22.67,0,20.58,12.52,1.71,.14,0,.67,0,0,0,7.61,1.59,10.93,0,0,0,0,0,0,0,0,4.66,0,.69,.8 EG600086,0,0,.02,2.06,0,10.95,0,0,2.56,0,28.89,0,16.57,7.27,0,0,0,5.87,0,0,0,5.63,3.12,10.96,0,0,0,0,0,0,.19,0,2.64,.14,2.25,.88 EG600087,0,0,0,0,0,6.17,0,0,8.06,0,24.85,.04,14.29,14.98,3.16,5.3,0,5.07,0,0,.84,4.24,2.14,7.49,0,0,0,0,0,0,0,0,3.15,0,.23,0 EG600088,0,0,0,0,0,7.48,0,0,6.53,0,25.78,0,18.02,12.28,6.36,2.03,0,5.98,0,0,0,7.63,0,6.06,0,0,0,0,0,0,0,0,1.76,0,0,.1 EG600089,0,0,1.8,.21,0,9.46,0,0,8.37,0,15.68,0,16.8,6.57,4.43,5.39,0,8.83,0,0,0,4.02,3.41,11.82,0,0,0,0,0,0,.46,.22,1.8,0,.43,.32 EG600090,0,0,0,.85,0,11.71,0,0,7.65,0,14.48,5.46,17.68,10.08,2.7,9.48,0,3.03,0,0,0,5.47,5.13,4.34,0,0,0,0,0,0,1.25,0,.69,0,0,0 EG600091,0,0,0,1.38,0,7.28,0,0,7.49,0,24.02,0,18.52,15.21,.59,6.2,0,3.64,0,0,0,2.79,2.86,6.66,0,.1,.01,0,0,0,.38,.09,1.89,.88,0,0 EG600092,0,0,0,2.98,0,7.07,0,0,10.5,0,20.31,0,14.2,10.42,2.99,4.49,0,1.0,0,0,0,7.0,3.84,9.6,0,0,0,0,0,1.37,.3,0,2.53,0,1.41,0 EG600093,0,0,1.72,2.2,0,8.47,0,0,7.65,0,11.88,2.47,9.48,10.79,1.36,9.53,0,6.38,0,10.3,0,0,3.2,3.62,0,0,0,0,0,0,5.03,0,3.09,0,2.43,.39 EG600094,0,0,0,0,0,9.17,0,0,8.81,0,22.8,0,16.46,13.47,6.22,6.21,0,1.46,0,0,0,1.66,0,8.45,0,0,0,0,0,0,.68,0,4.6,0,0,0 EG600095,0,0,0,0,0,9.27,0,0,7.66,0,21.58,.07,14.11,9.26,4.74,4.31,0,5.19,0,2.21,.16,5.04,.99,10.06,0,0,0,0,0,0,0,0,2.39,0,0,2.95 EG600096,.34,0,2.66,1.31,0,7.88,0,0,7.6,0,17.11,.48,13.87,9.96,2.66,1.35,0,5.67,0,2.5,0,10.18,2.32,7.71,0,.19,0,0,0,0,.03,0,2.55,0,.77,2.85 EG600097,0,2.05,0,0,0,4.31,0,0,9.38,0,18.69,0,9.33,11.61,3.08,2.86,0,10.71,0,1.82,0,5.92,0,9.51,0,0,0,0,0,0,6.14,0,2.53,0,.38,1.69 EG600098,0,0,0,.13,0,10.75,0,0,5.45,0,24.95,0,17.86,12.38,3.49,2.51,0,0,0,0,0,6.09,3.56,9.06,0,0,0,0,0,0,0,0,.36,0,3.41,0
Code:plink --bfile ukr_filtered --exclude <(awk 'length($5)>1||length($6)>1' ukr_filtered.bim|cut -f2) --make-bed --out ukr
There are currently 1 users browsing this thread. (0 members and 1 guests)
Bookmarks